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Abstract. The probabilistic programming language offers a high de-
gree of flexibility through its expressive syntax and semantics. It in-
cludes specialized programming primitives for random assignments and
“observe” statements, crucial for conditioning the model on observed
data. This study delves into several aspects of slicing probabilistic pro-
grams (PP), spanning slice semantics, different static slicing types, slic-
ing algorithms, and proof of correctness. Previous research on slicing
PP adopt a program semantics that conflates observation failure with
nontermination, yielding nontermination insensitive slices. However, ob-
servation failure and nontermination are distinct phenomena. By disen-
tangling them in the semantics, we have identified several variants of
static slicing, namely nontermination sensitive and nontermination in-
sensitive slicing. The latter is further categorized into distribution sen-
sitive and distribution insensitive, based on whether the slice strictly
preserves the original program’s outcome distribution, even in nonter-
minating scenarios, or weakly considers only terminating executions.
We have provided semantic characterization of all the variants and de-
vised novel algorithms to compute them by introducing a new concept
called observe-nontermination dependence. Additionally, we have devel-
oped (bi)simulation based proof techniques to verify the correctness of
computing all slice variants. Our contributions deepen the understand-
ing of static slicing in probabilistic programming, potentially impacting
various application domains.

1 Introduction

Program slicing [27] is a program transformation technique to extract relevant
parts of code that affect a particular computation or behavior. In essence, a
slice of an original program consists of all statements in the given program that
directly or indirectly influence the values at a specific point of interest, known
as the slicing criterion. To identify such statements, slicing techniques primar-
ily rely on a static analysis of data and control dependencies among variables.
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It has numerous applications in software engineering such as debugging, test-
ing, program understanding, and extraction of reusable components, to name a
few [29].

In this work, we specifically focus on slicing probabilistic programs. Prob-
abilistic programs extend ordinary programming languages by incorporating
two key features: i) the ability to sample values from probability distributions
(random sampling), and ii) the capability to condition variable values using ob-
serve statements (conditioning). These features enable probabilistic programs
to model and reason about uncertainty in a structured and expressive manner.

Probabilistic programs have found application in numerous domains. They
are central in the field of machine learning due to their compelling properties
for representing probabilistic models [8]. They are the cornerstone of modern
cryptography—all encryption schemes are by nature probabilistic [9]. Addition-
ally, they are fundamental to traditional randomized algorithms [18]. Finally,
they play a crucial role in ensuring privacy, as evidenced by the concept of
differential privacy [6].

Nevertheless, research on methods for slicing probabilistic programs has been
rather scarce. Hur et al. [10] developed the first slicing technique for (imperative)
probabilistic programs. They demonstrated that traditional data and control de-
pendence must be complemented with a new form of dependence to account for
the complex and more intricate effects of conditioning to compute correct slices.
A few years later, Amtoft and Banerjee [2] introduced the notion of probabilis-
tic control-flow graphs, which allows a direct adaptation of conventional slicing
machinery to the case of probabilistic programs.

Both approaches [10] and [2] suffer from several limitations. First, they adopt
a program semantics that conflates observation violation with nontermination
—two phenomena that, in our view, should be distinguished. Second, they sup-
port only a particular form of slicing known as nontermination insensitive. In
order to yield potentially smaller sliced programs, this form of slicing allows non-
terminating executions in the original program to “become” terminating in the
sliced program. While this may be sensible for some applications, in other appli-
cations such as program verification, it is of utter relevance that the original and
the sliced program share the same nontermination behavior. Finally, the form
of (nontermination insensitive) slicing they support is overly restrictive, leaving
out program slices that one would arguably deem valid. For example, this slicing
does not extend the Weiser’s slicing semantics for deterministic programs [28] to
probabilistic programs. Section 2 further expands on these shortcomings, while
also providing illustrative examples.

Motivated by these limitations, we develop a novel slicing technique for prob-
abilistic programs that supports both nontermination insensitive and sensitive
slices. Like [2], our development builds on classical notions of slicing, which are
adapted and generalized from the deterministic case to the probabilistic case.
In this paper, our main contributions include the following:

A novel taxonomy of slicing for probabilistic programs. We formally de-
fine the notions of nontermination sensitive and insensitive slicing for prob-
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abilistic programs (Section 5); this characterization naturally generalizes
the counterpart notion for deterministic programs. We further divide non-
termination insensitive slicing into two sub-categories: distribution sensitive
and distribution insensitive, which differ on whether the sliced program is re-
quired to preserve the relative outcome probabilities of the original program
or not. The cornerstone of this characterization (and all our development)
is a refined operational semantics of programs that distinguishes between
observation violation and nontermination (Section 4).

Syntactic conditions for generating different slice classes. We identify a
new form of dependence, dubbed observe(-nontermination) dependency,
that uniformly captures the indirect—more subtle—dependencies induced
by observe statements and/or nonterminating loops in probabilistic pro-
grams (Section 6).

Proof framework. We have developed a (bi)simulation-based proof frame-
work that verifies the correctness of the slicing for all slice variants. Through
a bisimulation argument, we show that properly combining traditional data
and control dependencies with the novel form of observe(-nontermination)
dependence yields correct program slices, for our entire slicing taxonomy
(Section 7).

An algorithm for computing slices. In addition to the theoretical advance-
ments for gaining insights into probabilistic programs, we have developed
an algorithm that computes slices based on our slicing taxonomy. This al-
gorithm performs incremental computations, resulting in better amortized
complexity compared to the worst-case complexity.

Organization of the paper. The rest of the paper is organized as follows.
Sec. 2 provides an overview of our slicing technique and explains how it ad-
dresses previous limitations, Sec. 3 gives background on related concepts, Sec. 4
discusses the syntax and our refined semantics of probabilistic programs, Sec. 5
presents a taxonomy with semantic characterizations of different slice types,
Sec. 6 illustrates how different slice variants can be computed using a combina-
tion of data, control, and a novel form of observe(-nontermination) dependence,
Sec. 7 provides a (bi)simulation based proof framework to verify the correctness
of different slice variants as discussed in Sec. 6, Sec. 8 introduces an algorithm
to compute all different slices and discusses the worst-case complexity of this al-
gorithm, Sec. 9 discusses related works, and finally, Sec. 10 concludes the paper.
The proofs of the theorems in Sec.. 7 are provided in appendix A.

2 Overview

In this section, we provide an overview of the main innovative features of our
slicing, and explain how they address the limitations of previous approaches.

2.1 Refined Program Semantics

To start with, let us consider the programs P0 and P1 in Fig. 1. Program P0

samples two independent random integer values in the interval [1, 4] and returns
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Program P0 :

1: x :≈ unif[1, 4];
2: y :≈ unif[1, 4];
3: observe (y = 4);
4: return x

Program P1 :

1: x :≈ unif[1, 4];
2: y :≈ unif[1, 4];
3: while (y 6= 4) do skip;
4: return x

Program P ?1 :

1: x :≈ unif[1, 4];
2: skip;
3: skip;
4: return x

Fig. 1: Semantics conflating nontermination with failure to establish observe
statements: Under the semantics in [10, 2], programs P0 and P1 are semanti-
cally equivalent, and P ?1 is a valid (nontermination insensitive) slice of both.

the first sample, observing that the second sample happens to be 4. This obser-
vation is denoted by the statement observe (y = 4) in line 3. Program P1, on
the other hand, enters a diverging loop if the second sample does not happen
to be 4.

From an operational perspective, P0 admits 4 × 1 = 4 executions, charac-
terized by having y = 4 (since the remaining 4 × 3 = 12 executions, where
y 6= 4, are blocked) and each occurring with probability 1/4× 1/4 = 1/16. On the
other hand, P1 admits 4 × 4 = 16 executions: those 4 executions where y = 4
are terminating and occur also with probability 1/16, while those 12 executions
where y 6= 4 are diverging, and therefore do not yield any (observable) program
outcome.

Existing slicing approaches [10, 2] adopt a program semantics that consists
in the “normalized distribution of outputs over terminating runs” that pass
observe statements. Under these semantics, the probability that P0 returns any
specific value, say 2, is calculated by dividing the probability 1× 1× 1/16 of all
valid and terminating executions3 where x = 2 by the probability 4 × 1 × 1/16
of all valid and terminating executions, yielding a result of 1/4. The probability
that P1 returns 2 is determined by following the same procedure (noting that
all executions induced by P1 are valid, but only a subset are terminating),
which yields, indeed, identical numbers. This remains true for any given return
value and therefore, the semantics in [10, 2] do not distinguish program P0 from
program P1. More generally, these semantics regard programs observe b and
while¬bdoskip as semantically equivalent, thus conflating the failure to establish
an observe statement with nontermination.

As argued by Bischsel et al. [4], we believe that failure to establish an ob-
servation and nontermination represent conceptually different phenomena, and
this distinction should be reflected by the semantics adopted for slicing. Even
more critical is the fact that the aforementioned semantics do not conservatively
extend that of a probabilistic language without conditioning, where no normal-
ization is applied. For example, any standard semantics [3] would report that
the probability that P1 outputs, say 2, is simply 1× 1× 1/16, without rescaling
it by any normalization factor.

3 By valid execution, we mean executions that pass all observe statements.
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To address both issues mentioned above, we adopt a semantics without nor-
malization that accumulates the probability of blocked executions. The prob-
ability of nontermination is derived from the probabilities of blocked and ter-
minating executions. This semantic approach enables us to distinguish between
program P0 and program P1. While the probability of any final outcome in both
programs is 1/4, the probabilities of blocked executions in these programs are
3/4 and 0 respectively, and the probability of nontermination is 0 for P0 and 3/4
for P1.

2.2 Support for Nontermination Sensitive Slicing

As a direct consequence of the semantics they adopt, [10, 2] present a slicing ap-
proach that is insensitive to nontermination. Program slicing typically comes in
two flavors: nontermination sensitive and insensitive, differing on how nontermi-
nating executions of the original program are treated in the sliced program (both
variants treat terminating executions uniformly, strictly requiring their preser-
vation). Loosely speaking, a nontermination sensitive slicing must preserve all
nonterminating executions of the original program in the sliced program. On
the other hand, a nontermination insensitive slicing allows nonterminating ex-
ecutions of the original program to become terminating in the sliced program
(and therefore the “termination domain” of the sliced program can be larger
than that of the original program).

For example, given the program P1 in Fig. 1, the slicing approaches in [10,
2] allow removing the while-loop together with the random assignment to y,
yielding the sliced program P ?1 . However, while program P1 terminates with a
probability of only 4 × 1 × 1/16 = 1/4, program P ?1 terminates with probability
1 > 1/4. In contrast to [10, 2], a nontermination sensitive slicing of P1 would not
allow removing the while-loop.

As exhibited in this example, nontermination insensitive slicing can be more
aggressive, leading to smaller sliced programs, which, for some applications such
as program understanding and debugging, can be more desirable than having—
larger—sliced programs that do preserve nontermination.

However, there exist applications of probabilistic programming such as cryp-
tography and differential privacy, which regard nontermination as an observable
phenomenon (by the so-called attacker) and preserving nontermination in these
domains becomes of paramount importance.

Notably, our slicing approach supports—and distinguishes between—both
forms of slicing. Like for deterministic programs, the key ingredient to establish
this distinction is the variant of control dependence among variables considered:
so-called weak control dependence will lead to a slicing that is nontermination
insensitive, and strong control dependence to a slicing that is nontermination
sensitive.
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Program P2 :

1: x :≈ unif[1, 4];
2: y :≈ unif[1, 4];
3: while (x = 4) do skip;
4: return x

Program P •2 :

1: x :≈ unif[1, 4];
2: skip;
3: while (x = 4) do skip;
4: return x

Program P ?2 :

1: x :≈ unif[1, 4];
2: skip;
3: skip;
4: return x

Fig. 2: Nontermination sensitive and insensitive slicing: Programs P2 (original
program), P •2 (nontermination sensitive slice) and P ?2 (nontermination insensi-
tive slice).

2.3 Natural Notion of Nontermination Insensitive Slicing

Weiser’s [28] original notion of nontermination insensitive slicing for determin-
istic programs requires that whenever the original program halts its execution
on a given input, the sliced program also halt on that input, traversing the
same execution path with equivalent values for relevant variables. Our counter-
part notion for probabilistic programs is inspired by this, generalizing it in a
quantitative manner to account for execution probabilities.

To illustrate this, let us consider program P2 from Fig. 2, and program P ?2
which is obtained from P2 by slicing away the while-loop in line 3, together with
the random assignment to y in line 2. Observe that P2 admits 3 × 4 = 12 ter-
minating executions, which can be partitioned into three groups of 4 executions
each, according to the value of variable x, e.g., the first group gathers the 4
executions where x = 1, and likewise for the second (x = 2) and third (x = 3)
group; each group has an overall probability of 4× 1/16 = 1/4.

Each of these groups of terminating executions in P2 is “mirrored by” a
terminating execution in P ?2 , with equivalent value for x and occurring with
the same probability (1/4). Therefore, we regard P ?2 as a valid nontermination
insensitive slice of P2. Furthermore, note that the nonterminating executions of
P2 (i.e. those where x = 4) “become” terminating in P ?2 , matching the intuition
behind nontermination insensitive slicing that we provide in Section 2.2.

While our notion of nontermination insensitive slice for probabilistic pro-
grams arguably captures Weiser’s original intuition, previous approaches [10, 2]
consider a very restricted form of nontermination insensitive slicing, which, for
example, rules out P ?2 as a valid slice of P2. This is because their normalized
output distribution do not fully agree (intuitively, because P2 outputs 4 with
a null probability and P ?2 does it with a strictly positive probability). Interest-
ingly, the only proper slice of P2 that they deem valid is P •2 , where only the
random assignment to y is removed.

3 Preliminaries

In this section, we recall the notions related to probability distributions, control
flow graphs and program dependence relations that we use in our subsequent
development.
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3.1 Probability distributions

Probability distributions are the cornerstone of probabilistic program semantics.

Definition 1 (Probability distribution). Given a denumerable set A, a prob-
ability distribution or simply distribution over A is a function

µ : A→ [0, 1] such that
∑
a∈A

µ(a) ≤ 1 .

We use D(A) to denote the set of distributions over A and D=1(A) the proper
subset where

∑
a∈A µ(a) = 1.4

The probability of an event A0 ⊆ A, by abuse of notation also written µ(A0), is
defined as µ(A0) =

∑
a∈A0

µ(a). We use w(µ) to denote the weight
∑
a∈A µ(a)

of µ and support(µ) to denote its support {a ∈ A | µ(a) > 0}
Finally, we write 0 for the null distribution that assigns probability 0 to all

elements of its underlying carrier set.

Operations. Given µ1, µ2 ∈ D(A), we define the (partial) sum µ1 + µ2 ∈ D(A)
as (µ1 + µ2)(a) = µ1(a) + µ2(a) provided w(µ1) + w(µ2) ≤ 1. Similarly, given a
scaling factor c ∈ R≥0 and a distribution µ ∈ D(A) such that c · w(µ) ≤ 1, we
write c · µ for the distribution (in D(A)) defined as (c · µ)(a) = c · µ(a)

Finally, given µ ∈ D(A) and A0 ⊆ A we define µ�A0 ∈ D(A), the restriction
of µ w.r.t. A0 by:

µ�A0
=

{
µ(a) if a ∈ A0

0 otherwise

Note that we always have µ = µ�A0 + µ�A\A0
.

Order structure. For any denumerable set A, the set D(A) of probability dis-
tributions over A can be given the structure of an ω complete partial order
(ω-cpo) by taking pointwise lifting of the natural order and supremum of ω-
chains over [0, 1] to the functional space A → [0, 1]. Namely, relation “≤” de-
fined as µ1 ≤ µ2 iff ∀a ∈ A. µ1(a) ≤ µ2(a) is a partial order over D(A), and
for any ω-chain µ1 ≤ µ2 ≤ µ3 ≤ . . . in D(A), operation supk∈N µi defined as
(supk∈N µi)(a) = supk∈N µ1(a) yields a distribution in D(A) that is the least
upper bound of the ω-chain.

3.2 Control flow graphs

We represent (structured) programs in terms of their control flow graphs (CFGs).
In particular, program semantics, dependence relations and slicing are defined
over this representation.

4 Traditionally, elements of D(A) are referred to as probability subdistributions, but
for simplicity, here we refer to them as distribution.



Un
de
r B
lin
d
Re
vi
ew

8

Definition 2 (Control flow graph). A CFG is a directed graph G = (N ,E ,
start), where

1. N is the set of nodes that represent atomic commands in the program and
is partitioned into two subsets, i.e. N = N S ] N P , where N S contains
statement nodes which have at most one successor node and N P contains
predicate nodes which have one or two successors.

2. start ∈ N is a distinguished node representing the starting point of program
execution (the entry point of the CFG). It is the only node of in-degree 0.

3. E ⊆ N ×N is the set of edges representing the possible flow of execution in
the program.

A node is called final or exit if it is either a statement node with no successor, or
a predicate node with only one successor. These nodes represent the succesfull
termination of a program execution and we write NE for the subset of such
nodes.

Given a CFG G = (N ,E , start) and a node n ∈ N , we use succ(n) and pred(n) to
respectively denote its set of successors {m ∈ N | (n,m) ∈ E} and predecessors
{m ∈ N | (m,n) ∈ E}.

Paths. A finite CFG path n1, n2, . . . , nk, or [n1..nk] for short, is a sequence of
CFG nodes such that ni+1 ∈ succ(ni) for all 1 ≤ i < k and k ≥ 1. An infinite
path n1, n2, . . . is denoted by [n1..]. A path is called non-trivial if it contains
at least two nodes, and maximal or complete if it is either an infinite path or a
finite path that ends at a final node. In terms of notation, we sometimes write
π − {m,n} for set of CFG nodes in path π, excluding nodes m and n.

3.3 Program dependences

Data and control dependences are fundamental relations for computing dependence-
based slicing; they are defined over the CFG representation of programs.

In particular, the notion of data dependence relies on the set of program
variables that are defined at a given node n, written def(n), and referenced at
a given node n, written ref(n).

Definition 3 (Data dependence [26]). Given a CFG G, node n is called

data dependent on node m, written m
dd→ n, if there is a program variable v

such that (1) v ∈ def(m) ∩ ref(n), and (2) there exists a nontrivial path π in G
from m to n such that for every node m′ ∈ π−{m,n}, it holds that v 6∈ def(m′).

Intuitively, m
dd→ n represents that node n uses the value of a program variable

that is set at node m.
The first formal definition of standard control dependence relation is pro-

vided by Ferrante et al.[7] based on the postdominator [25] relation. Node n is
said to postdominate node m if and only if every path from m to the exit node
ne goes through n. Note that this definition assumes that G has a single exit
node ne. n strictly postdominates m if n postdominates m and n 6= m. The
standard control dependency relation can be defined as follows:
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Definition 4 (Control Dependence [7, 26]). Node n is control dependent

on node m (written m
wcd−−→ n) in the CFG G if (1) there exists a nontrivial path

π in G from m to n such that every node m′ ∈ π − {m,n} is postdominated by
n, and (2) m is not strictly postdominated by n.

The relation m
wcd−−→ n indicates that there must be two branches originating

from m, where n is consistently executed in one branch but may not be executed
in the other. Several control dependency relations [22, 23, 26, 24] have been pro-
posed to extend the standard relation, addressing various scenarios in program
control flow such as CFGs with infinite loops, no end node, or multiple end
nodes. Control dependence relations are further categorized into nontermina-

tion insensitive and nontermination sensitive. The relation
wcd−−→ is a weak form

of control dependence that does not consider the nontermination scenario, and
hence it is nontermination insensitive that require to have an end node. Ran-
ganath et al. [26] extended this definition and does not require the CFG to have
an end node, and further provided the definition of nontermination sensitive

control dependence. We denote this dependence as
scd−−→, where “scd” stands for

strong control dependence, and it is defined as follows.

Definition 5 (Nontermination-Sensitive Control Dependence [26]). In
a CFG, nj is (directly) nontermination-sensitive control dependent on node ni,

denoted ni
scd−−→ nj, iff ni has at least two successors, nk and nl, such that:

1. for all maximal paths π from nk, nj always occurs in π and either ni = nj
or nj strictly (nj = ni) precedes any occurrence of ni in π; and

2. there exists a maximal path π0 from nl on which either nj does not occur,
or ni strictly precedes any occurrence of nj in π0.

In the above definition, the term “nj strictly precedes any occurrence of ni
in π” means that: (i) nj occurs in π; and either (ii) ni does not occur in π;
or (iii) the first occurrence of nj in π is earlier than the first occurrence of ni.

Fig. 3 presents an example CFG and the
scd−−→ relation among the nodes in this

CFG according to Def. 5.
Fig. 3 depicts the nontermination (in)sensitive control dependences on the

example CFG. Some variations between these control dependences exist as

shown in the figure. For example, the relation a
wcd−−→ d holds due to the fact

that the loop b → c → b is assumed to be terminating. On the other hand,

a
scd−−→ d does not hold as the loop b → c → b may be nonterminating which

does not contain d and condition (1) in Def. 5 is violated. More details can be
found in [26].

For the remainder of the paper, we use the symbol
cd→ to denote any control

dependency relation.

3.4 Closure relations

Almost all slicing algorithms need to compute the closure of data and con-
trol dependencies. Danicic et al. [5] introduced two generalizations of control
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a

b
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d

i
j

f

g

h

e

Nodes
scd−−→ wcd−−→

a b, c, f, h, e b, c, d, i, j, f, h, e
c b, c, d, j b, c
d i −
f g g

Fig. 3: An Example CFG and nontermination (in)sensitive control dependencies
among its nodes [26]

dependence, termed weak and strong control closure, which account for non-
termination insensitivity and nontermination sensitivity respectively. Many ex-
isting control dependencies can be seen as specific instances of these general-
izations. In the following, we provide the definition of weak and strong control
closure by summarizing the concepts from Danicic et al.

Definition 6 (Weak Control Closure). Let N ′ be a subset of nodes in the
CFG G = (N,E). N ′ is weakly control closed iff for all n 6∈ N ′ reachable from
N ′ implies that all CFG paths n1 = n, . . . , nk from n meet at nk ∈ N ′ such that
ni 6∈ N ′ for 1 < i < k.

While computing a subset of CFG nodes N ′ as the slice, if N ′ is not weakly
control closed, there exists a CFG node n 6∈ N ′ having at least two distinct
CFG paths without going through a node in N ′ and meeting at distinct nodes
m1,m2 ∈ N ′ such that m1 6= m2. This implies that n is a predicate node, and
based on the outcome of the condition at n during an execution, either m1 or m2

will be executed first. Consequently, we say that the weak control dependence

relation n
wcd−−→ mi holds for i = 1, 2. Weak control dependence relation does

not take into account the effect of nontermination.

Definition 7 (Strong Control Closure). Let N ′ be a subset of nodes in the
CFG G = (N,E). N ′ is strongly control closed if, for every node n 6∈ N ′:

1. n is reachable from N ′, and either (2) or (3) below are satisfied:
2. all CFG paths n1 = n, . . . , nk from n meet at the same node nk ∈ N ′ such

that ni 6∈ N ′ for 1 < i < k, and all complete paths from n contain at least
one node from N ′,

3. no node in N ′ is reachable in G from n.

In simpler terms, this definition essentially demands that the conditions for
weak control closure are met. Consequently, if the control dependence relation
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n
scd−−→ mi holds, then the weak control dependence relation n

wcd−−→ mi also holds.
Additionally, if there exists a predicate node n with two branches: one leading
to a CFG path n1 = n, . . . , nk that meets at nk ∈ N ′ without passing through
any node in N ′, and the other branch leading to an infinite path representing
nonterminating execution without passing through any node m ∈ N ′, then

the relation n
scd−−→ m holds. Several efficient algorithms [16, 14, 15] have been

developed to compute weak and strong control closure, even for interprocedural
programs [17]. We apply these algorithms to compute the control closure for the
slicing of probabilistic programs.

4 Programming Model

We next present the programming language that we use for describing proba-
bilistic programs, including its syntax and CFG-based semantics.

4.1 Language Syntax

To describe probabilistic programs we adopt a simple imperative language ex-
tended with random assignments and observe statements, dubbed cpWhile. A
program p is a command, followed by a return expression. A command is ei-
ther a no-op (skip), a deterministic assignment (x := a), a random assignment
(x :≈ d), a sequential composition (c1; c2) of two other commands, a conditional
branching (if b then c1 else c2), a guarded loop (while b do c) or an observation
(observe b). Formally, it is given by the following grammar:

p ::= c; return a Program

c ::= skip | x := a | x :≈ d | c1; c2 | Commands
if b then c1 else c2 | while b do c | observe b

a ::= z | x | −a | a1 + a2 | a1 × a2 | . . . Arithmetic expressions

b ::= true | false | a1 = a2 | a1 ≤ a2 | . . . | Boolean expressions
¬b | b1 ∧ b2 | b1 ∨ b2 | . . .

d ::= unif[z1, z2] | distr{z1 7→ p1, . . . , zn 7→ pn} | . . . Distribution expressions

Program variables and arithmetic expressions are integer-valued. Arithmetic
and Boolean expressions are rather standard. Distribution expressions represent
probability distributions over the set of integers; for concreteness, we include
distribution probabilities defined pointwise (distr{z1 7→ p1, . . . , zn 7→ pn}) and
uniform distributions over an integer interval (unif[z1, z2]).

As for commands, probabilistic assignments and observe statements are the
only “distinguished” class of statements, endowing cpWhile with a probabilistic
behavior. A probabilistic assignment x :≈ d samples a value from the distribu-
tion d and assigns it to the program variable x . Statement observe b blocks the
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executions that violates b and renormalizes the probability of the remaining—
called valid—executions.

We use V to denote the finite set of program variables (ranged over by x),
P to denote the set of programs (ranged over by p), C to denote the set of
commands (ranged over by c), AE to denote the set of arithmetic expressions
(ranged over by a), BE to denote the set of Boolean expressions (ranged over
by b) and DE to denote the set of distribution expressions (ranged over by d).

4.2 Language Semantics

As usual, a store σ is a mapping from variables to integer numbers; we use
Σ = V → Z to denote the set of stores. Given a store σ ∈ Σ and a variable
x ∈ V, we write σ[x 7→ z] for the store that is obtained from σ, by updating
the value of x to z. To provide semantics for programs, we assume the following
interpretation functions:

J·K : AE → Σ → Z, J·K : BE → Σ → B and J·K : DE → Σ → D=1(Z) ,

These functions take an arithmetic expression, a Boolean expression, or a dis-
tribution expression, respectively, along with a store, and return an integer, a
Boolean, or a unitary distribution over the set of integers. The definitions of
these functions are standard and thus are not detailed here.

The semantics of programs is instrumented to yield, besides the distribution
of final stores, also the probability of blocked executions. This is required, in
particular, in Section 5, to characterise our different notions of program slicing.

Formally, the semantics of programs is defined in terms of their control flow
graphs. The translation of a program into a CFG is also standard, and we refer
the reader, e.g., to [20] for a detailed account thereof. We assume a mapping
function P = code(G) to transform a CFG G into its corresponding program
P . We also use code(n) to denote the program instruction for CFG node n. In
latter sections, subscripts indicate different program translations from a CFG
G, such as P1 = code1(G) for the original program and P2 = code2(G) for its
slice. Similarly, codei(n) represents the instruction for node n in program Pi.

Example 1. In Fig. 4, we present a program that encodes a geometric distribu-
tion and its associated CFG. The program, called Pgeo , repeatedly flips a coin
until the first head is observed and returns the numbers of trials required for
this outcome.

CFGs derived from cpWhile programs are characterized, in particular, as
follows. Statement nodes correspond to no-ops, (deterministic or random) as-
signments, observe statements or return statements and predicate nodes corre-
spond to the guards of while loops or conditional branchings. Since all programs
end with a return statement, predicate nodes always have two successors, given,
respectively, by functions succT(·) (the true successor) and succF(·) (the false
successor), and all statement nodes, except for those associated to return state-
ments, have one successor, given by function succ?(·). Each CFG has a single
exit node, associated to the return statement of the respective program.
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Program Pgeo :

m := 0;
b := 0;
while (b = 0) do

b :≈ unif[0, 1];
m := m+ 1

return m

(a) cpWhile program

m := 0n1

b := 0n2

b = 0

n3

b :≈ unif[0, 1]n4

T

m := m+ 1n5

return m n6

F

(b) Control flow graph

〈n1, {(m0, b0) 7→ 1}, p〉

〈n2, {(0, b0) 7→ 1}, p〉

〈n3, {(0, 0) 7→ 1}, p〉

〈n4, {(0, 0) 7→ 1}, p〉

T

〈n5, {(0, 0) 7→ 1/2, (0, 1) 7→ 1/2}, p〉

〈n3, {(1, 0) 7→ 1/2, (1, 1) 7→ 1/2}, p〉

〈n4, {(1, 0) 7→ 1/2}, p〉

T

〈n5, {(1, 0) 7→ 1/4, (1, 1) 7→ 1/4}, p〉

〈n3, {(2, 0) 7→ 1/4, (2, 1) 7→ 1/4}, p〉

...

T

〈n6,0, p〉
F

〈n6, {(1, 1) 7→ 1/2}, p〉F

〈n6, {(2, 1) 7→ 1/4}, p〉F

(c) Operational semantics

Fig. 4: Program Pgeo encoding a geometric distribution, together with its control
flow graph and an excerpt of its (small-step) operational semantics. To ease the
reading, when presenting the operational semantics we color in red the variations
of probabilistic states w.r.t. the preceding configuration.

To define the semantics of programs over their CGFs, we follow Amtoft
and Banerjee [2] and assume that CFG nodes modify distributions over stores,
rather than individual stores. To simplify terminology, in the reminder we refer
to distributions over stores, i.e. elements of D(Σ), as probabilistic states or
probabilistic stores (which are ranged over by µ).

Concretely, the operational semantics of programs relates CFG configura-
tions (which are ranged over by Γ ). A configuration of a CFG G = (N ,E , start)
is a triple 〈n, µ, p〉, where n ∈ N is a node of G, µ ∈ D(Σ) is a probabilistic state
and p ∈ [0, 1] is a probability. Intuitively, the (small-step) semantics relates a
pair of configurations 〈n, µ, p〉 and 〈n′, µ′, p′〉, written 〈n, µ, p〉 −→ 〈n′, µ′, p′〉,
if when executing statement or predicate in node n from a probabilistic state
µ and a cumulated probability p of violating observe statements, the program
transitions, in one step, to successor node n′ resulting a in a probabilistic state
µ′ and a cumulated probability p′ of violating observe statements. (Note that
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n ∈ N S \NE code(n) = skip

〈n, µ, p〉 −→ 〈succ?(n), µ, p〉 [skip]

n ∈ N S \NE code(n) = x := a

µ′(σ′) = µ({σ ∈ Σ | σ[x 7→ JaKσ] = σ′})
〈n, µ, p〉 −→ 〈succ?(n), µ′, p〉

[assign]

n ∈ N S \NE code(n) = x :≈ d
Assuming V = {x , x1, . . . , xn},

µ′(x 7→ z, x1 7→ z1, . . . , xn 7→ zn) =
∑
σ∈Σ|

∧n
i=1 σ(xi)=zi

µ(σ)× (JdKσ z)

〈n, µ, p〉 −→ 〈succ?(n), µ′, p〉
[random]

n ∈ N S \NE code(n) = observe b
µT = µ�{σ∈Σ|JbKσ=true} µF = µ�{σ∈Σ|JbKσ=false}

〈n, µ, p〉 −→ 〈succ?(n), µT , p+ w(µF )〉 [observe]

n ∈ N P code(n) = b
µT = µ�{σ∈Σ|JbKσ=true}

〈n, µ, p〉 −→ 〈succT(n), µT , p〉
[cond-t]

n ∈ N P code(n) = b
µF = µ�{σ∈Σ|JbKσ=false}

〈n, µ, p〉 −→ 〈succF(n), µF , p〉
[cond-f]

Fig. 5: Small-step semantics over program CFGs.

as the execution of a program progresses, the probability of violating observe
statements can only remain equal or increase; therefore, in such a transition,
we will always have p′ ≥ p.) The formal definition of relation −→ is provided
in Fig. 5. All rules are self-explanatory. In particular, we have no rule for nodes
representing return statements because they are always final nodes, with no
successor.

Example 2. In Fig. 4c, we depict an excerpt of the small-step semantics of pro-
gram Pgeo .

Even though transition relation −→ fully describes program behaviour, we
are mostly interested in describing the distribution of final stores or final prob-
abilistic state reached by programs. Informally, we can construct such is final
probabilistic state by adding up all probabilistic states reached within exit nodes
(in our running example from Fig. 4, given by the configurations highlighted in
violet). Formally, we need to define a step-indexed relation −→k that collects
probabilistic states reached in exit nodes within k steps, and take the “limit” of
the so-defined sequence. We provide the definition of this step-indexed semantics
in Fig. 6.

Example 3. Continuing with program Pgeo from Fig. 4, for any initial proba-
bilistic state µ0 and any probability p, we have:

– 〈n1, µ0, p〉 −→k 〈〈0, p〉〉 for all k = 0, . . . , 6
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〈n, µ, p〉 −→0 〈〈0, p〉〉

〈n, µ, p〉 −→k 〈〈µ, p〉〉
provided k ≥ 1 and n ∈ NE

〈n, µ, p〉 −→ 〈succ?(n), µ′, p′〉
〈succ?(n), µ′, p′〉 −→k 〈〈µ′′, p′′〉〉
〈n, µ, p〉 −→k+1 〈〈µ′′, p′′〉〉

provided k ≥ 1 and n ∈ N S \NE

〈n, µ, p〉 −→ 〈succT(n), µT , p〉
〈succT(n), µT , p〉 −→k 〈〈µ′T , p+ p′T 〉〉
〈n, µ, p〉 −→ 〈succF(n), µF , p〉

〈succF(n), µF , p〉 −→k 〈〈µ′F , p+ p′F 〉〉
〈n, µ, p〉 −→k+1 〈〈µ′T + µ′F , p+ p′T + p′F 〉〉

provided k ≥ 1 and n ∈ N P

Fig. 6: Step-indexed semantics over program CFGs.

– 〈n1, µ0, p〉 −→k 〈〈{(1, 1) 7→ 1/2}, p〉〉 for all k = 7, . . . , 9
– 〈n1, µ0, p〉 −→k 〈〈{(1, 1) 7→ 1/2, (2, 1) 7→ 1/4}, p〉〉 for all k = 10, . . . , 12

As we can already notice in the above example, relation −→k enjoys two
relevant properties:
Determinism: For any configuration 〈n, µ, p〉 and any number of steps k,

there exist unique µ′ and p′ such that 〈n, µ, p〉 −→k 〈〈µ′, p′〉〉.

ω-chain: For any configuration 〈n, µ, p〉, the sequence 〈〈〈µk, pk〉〉 |
〈n, µ, p〉 −→k 〈〈µk, pk〉〉〉k∈N forms an ω-chain, where pairs
〈〈µk, pk〉〉 are ordered componentwise, i.e. 〈〈µ, p〉〉 ≤ 〈〈µ′, p′〉〉
iff µ ≤ µ′ and p ≤ p′.

Proof. We can establish the determinism of −→k by a simple induction over k,
exploiting the deterministic nature of relation−→: if n ∈ N S\NE , then for every
µ and p there exist unique µ′ and p′ such that 〈n, µ, p〉 −→ 〈succ?(n), µ′, p′〉;
likewise, if n ∈ N P , then for every µ and p there exist unique µT , µF and pT , pF
such that 〈n, µ, p〉 −→ 〈succT(n), µT , pT 〉 and 〈n, µ, p〉 −→ 〈succF(n), µF , pF 〉.

To establish the ω-chain property, we show that k1 < k2 , 〈n, µ, p〉 −→k1

〈〈µ1, p1〉〉 and 〈n, µ, p〉 −→k2 〈〈µ2, p2〉〉 entails that µ1 ≤ µ2 and p1 ≤ p2. The
proof proceed by routine induction on the derivation of 〈n, µ, p〉 −→k2 〈〈µ2, p2〉〉
relying, as above, on the deterministic nature of relation −→.

The ω-chain property allows formally defining program outcomes and the
probability of blocked executions:

Definition 8 (Program semantics). The distribution transformer semantics
of a cpWhile program of CFG G = (N ,E , start) is given by function JGKdt : N ×
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D(Σ)× [0, 1]→ D(Σ)× [0, 1], defined as

JGKdt 〈n, µ, p〉 = sup
k∈N

〈
〈〈µk, pk〉〉 | 〈n, µ, p〉 −→k 〈〈µk, pk〉〉

〉
The (unnormalized) final probabilistic state JGK µ0 reached by the program,

when executed from initial probabilistic state µ0, and the probability of blocked
executions Pr[G(µ0) ∈ E] are respectively defined as

JGK µ0 = µ′ and Pr[G(µ0) ∈ E] = p′,

where 〈〈µ′, p′〉〉 = JGKdt 〈start , µ0, 0〉.

5 Slicing Taxonomy

Our contributions include novel characterizations of (and algorithmic support
for) non-termination sensitive and insensitive slicing for probabilistic programs.
We further divide non-termination insensitive slicing into two sub-categories:
distribution sensitive and distribution insensitive. Let us present the main intu-
ition behind these semantic notions.

5.1 Nontermination

We define the probability of nontermination of a program as the complement
of the sum between the probability of blocked executions and the probability of
valid terminating executions:

Pr[G(µ0) ∈ ⇑] = 1−
(
Pr[G(µ0) ∈ E] + w(JGK µ0)

)
Since our program semantics separate blocked executions from the termi-

nating ones (see the [observe] rule in Fig. 5) and both are mutually exclusive
with nonterminating executions, their combined total probability equals 1. By
calculating the marginal distribution of nontermination as above, we can fairly
compare the nonterminating behavior of the original program and its slice.

5.2 Taxonomy

Non-termination sensitive slicing. A non-termination sensitive slicing will pre-
serve the program outcome as well as the probability of nontermination. Let P ′

be a subprogram of P (i.e. P ′ is obtained from P by replacing some of its state-
ments by skip). We formally state that P ′ is a valid non-termination sensitive
slice of P w.r.t. a set of variables V that are used in the return expression iff
for every initial probabilistic state µ0 of P and µ′0 = µ0|V of P ′, the following
equation hold:

∃q ∈ [0, 1]. (JP Kµ0)|V = q · (JP ′Kµ′0)|V and Pr[P (µ0) ∈ ⇑] = Pr[P ′(µ′0) ∈ ⇑]

(1)



Un
de
r B
lin
d
Re
vi
ew

17

The first equality in the above equation states the (relative) equivalence of
the probabilistic states of P and P ′. While we require the equivalence of the
probability of nontermination of both programs, we only require the equality
for the final probabilistic stores upto a scaling factor q. To illustrate this class
of slicing, let us consider program P2 from Fig. 2. The probability of returning
a proper value and of divergence are as follows:

(JP2Kµ0)|{x} = {1 7→ 1/4, 2 7→ 1/4, 3 7→ 1/4, 4 7→ 0, 7→ 0}
Pr[P2(µ0) ∈ ⇑] = 1/4

where symbol “ ” stands for “otherwise”, i.e., any other value not present in
the preceding enumeration. The only proper slice of P2 w.r.t. x that is non-
termination sensitive is P •2 , whose output distribution obeys the very same
equations as above.

Non-termination insensitive slicing. In a non-terminating insensitive slicing,
the sliced program will preserve or increase the probability of returning any
given outcome, in comparison with the original program. Intuitively, this is
because some non-terminating execution in the original program may become
terminating in the sliced program, and therefore, we are trading some non-
termination probability in the original program for some normal termination
in the sliced program. As a result, the sliced program may feature a smaller
probability of non-termination. More formally, if P ′ is a subprogram of P , we say
that P ′ is a valid non-termination insensitive slice of P w.r.t. a set of variables
V that are used in the return expression iff for every initial probabilistic state
µ0,

(JP Kµ0)|V ≤ (JP ′Kµ0)|V and Pr[P (µ0) ∈ ⇑] ≥ Pr[P ′(µ′0) ∈ ⇑] (2)

To ilustrate this class of slicing, let us consider the output distribution of P ?2 ,
and compare it to that of P2:

(JP ?2 Kµ0)|{x} = {1 7→ 1/4, 2 7→ 1/4, 3 7→ 1/4, 4 7→ 1/4, 7→ 0}
Pr[P ?2 (µ0) ∈ ⇑] = 0

From the above equations, we conclude that P ?2 is a non-termination insensitive
slice of P2 w.r.t. variable x.

In Figure 1 we can find another example of this kind of slicing: Program P ?1
is a non-termination insensitive slice of P1 w.r.t. x:

(JP1Kµ0)|{x} = 1/4 · {1 7→ 1/4, 2 7→ 1/4, 3 7→ 1/4, 4 7→ 1/4, 7→ 0}
Pr[P1(µ0) ∈ ⇑] = 1/4

(JP ?1 Kµ0)|{x} = {1 7→ 1/4, 2 7→ 1/4, 3 7→ 1/4, 4 7→ 1/4, 7→ 0}
Pr[P ?1 (µ0) ∈ ⇑] = 0

In particular it is a distribution sensitive slice because it preserves the relative
probabilities of the original program, or said otherwise, the output distribution
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of P ?1 is a scaled version of that of P1. For this subclass of non-termination
insensitive slicing, Equation 2 is refined to

∃q ∈ [0, 1]. (JP Kµ0)|V = q · (JP ′Kµ0)|V and Pr[P (µ0) ∈ ⇑] ≥ Pr[P ′(µ′0) ∈ ⇑]
(3)

Intuitively, the above equation holds when the removed program fragment is
“probabilistically independent” of the rest of the program, and the scaling factor
q — 1

4 in the above example— coincides with the termination probability of the
program fragment being removed. This kind of slicing corresponds, indeed, to
the one supported by Amtoft and Banerjee [2].

When the sliced program does not necessarily respect the relative proba-
bilities of the original program, but does comply with Equation 2, we call it a
distribution insensitive slice. This is the case, e.g., for P ?2 , and P2.

Note that a nontermination sensitive slice is also distribution sensitive, as it
always preserves the relative distribution of the original program. Furthermore,
a nontermination insensitive distribution sensitive slice may also be nontermi-
nation sensitive, e.g., if the original program is always terminating, since in that
case both Eq. 1 and Eq. 3 are satisfied. For example, program P ?1 in Fig. 1
is both a nontermination sensitive and nontermination insensitive distribution
sensitive slice of P0. Moreover, a nontermination insensitive distribution sensi-
tive slice may also be nontermination insensitive distribution insensitive when
both Eq. 2 and Eq. 3 are satisfied. For example, program P ?1 in Fig. 1 is a
nontermination insensitive distribution (in)sensitive slice of P1.

6 Slicing Definition

In the context of probabilistic programs, slicing typically entails identifying seg-
ments of code that influence the evaluation of the return expression, particularly,
the values of variables involved in this expression. The objective is to compute
a slice that preserves only the portions relevant to the return expression, while
maintaining the original program’s relative distribution of return values as dis-
cussed in Sec. 5. The slicing process is guided by a slicing criterion C ⊆ N . In the
context of PP, C is typically a singleton set containing the CFG node represent-
ing the return statement. Although C could potentially encompass additional
CFG nodes without any inherent limitation, we maintain this restriction for the
sake of brevity. Dependence-based slicing algorithms typically operate at the
CFG level and compute a slice set sliceC as described below:

sliceC(G,
cd→) =

⋃
n∈C
{m : m(

cd→ ∪ dd→)∗n} (4)

where,
cd→ is a suitable control dependence relation,

dd→ is a data dependence
relation, and →∗ is the transitive reflexive closure of →. This definition can
precisely captures the slice of a deterministic program.The sliceC function above

is parametric to a control dependence relation
cd→ which decides whether the
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slice is nontermination insensitive or sensitive. A strong (resp. weak) control
dependence relation produces nontermination sensitive (resp. insensitive) slices.

However, the above equation is not sufficient and in some cases not correct in
producing a correct slice of a probabilistic program. The observe statements and
the nonterminating loops may affect the final distribution of a PP by introducing
an special kind of dependency called observe-nontermination dependence 5 that
cannot be captured by data and control dependencies only. In the next section,
we illustrate this dependence through examples and provide its formal definition.

6.1 Observe-Nontermination dependence

Both an observe statement and a potentially nonterminating loop determine
whether the execution should proceed beyond these instructions. An execution
is either discarded if an observation failure occurs or remains stuck indefinitely
if the loop does not terminate. Consequently, these two kinds of program in-
structions, which we collectively call observe-nontermination instruction, may
impact the final distribution of a PP program. An observe-nontermination
dependence is a conditional dependence between two CFG nodes n0 and nr
such that no represents an observe-nontermination instruction, nr is a CFG
nodes in the slicing criterion C, and there exists a CFG node n that affects
the execution of both no and nr due to data and/or control dependencies. The
following definition provides the formal treatment of observe-nontermination
dependence:

Definition 9 (Observe-Nontermination dependence). Let G = (N,E, n?)
be any CFG, let no ∈ N be an observe-nontermination instruction, and let
nr ∈ C be any CFG node in the slicing criterion. An observe-nontermination

dependence relation between no and nr, denoted no
obntd−−−→ nr, holds iff there

exists a CFG node n ∈ N such that the reflexive transitive closure relations

n(
wcd→ ∪ dd→)∗no and n(

wcd→ ∪ dd→)∗nr hold.

Thus, the relation no
obntd−−−→ nr ensures the presence of a node n creating a

V -structure of dependences between (n, nr) and (n, no), implying that nr and
no are not probabilistically independent. If no in the above definition represents
solely an observe statement, then we refer to the dependence relation as an

observe dependence, denoted no
obsd−−−→ nr. Note that we have used the weak

form of control dependence relation
wcd→ in the above definition to avoid trivial

relation. If no represents a predicate node representing the loop header of a
nonterminating loop, and we employ the strong form of nontermination sensitive

control dependence relation
scd→, then no(

wcd→ ∪ dd→)∗no and no(
wcd→ ∪ dd→)∗nr

always hold. Consequently, no
obntd−−−→ nr trivially holds, which is undesirable.

We illustrate the aforementioned dependence relation with examples. Con-
sider programs P0, P1, and P2 in Fig. 1 and 2. Let ni represents the CFG node

5 may be we should come up with a better name like distribution-aware dependence
or something else
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Slicing class
cd→ R→

non-termination sensitive
scd−−→ obntd−−−→

non-termination insensitive, distribution sensitive
wcd−−→ obntd−−−→

non-termination insensitive, distribution insensitive
wcd−−→ obsd−−−→

Table 1: Dependence relation used for defining each class of slicing.

of statement i in the given program. For programs P0 and P1, the relation

n3
obntd−−−→ n4 does not hold, as there is no CFG node n such that n(

wcd→ ∪ dd→)∗n3

and n(
wcd→ ∪ dd→)∗n4 hold for any n ∈ {n1, n2, n3, n4}. This is evident since the

variables x and y are independent in these programs. Consequently, n3 does
not affect the final (relative) distribution of these programs, and it can be re-
moved (or replaced by an skip statement) from some slices that satisfy any of
Eq. (1)- (3). This is evident, as we have seen in Sec. 5, that (JPiKµ0)|{x} =
3
4 × (JP ?1 Kµ′0)|{x} for i = 0, 1 and µ′0 = µ0|{x}. In the case of program P2, the re-

lation n3
obntd−−−→ n4 holds due to the relations n1

dd→ n3 and n1
dd→ n4. This implies

that n3 affects the final distribution of P2. As illustrated in Sec. 5, there exists
no q ∈ [0, 1] such that (JP2Kµ0)|{x} = q × (JP ?2 Kµ′0)|{x} holds for µ′0 = µ0|{x}.
Thus, n3 cannot be sliced away from any distribution sensitive slice of P2. How-
ever, a nontermination insensitive distribution insensitive slice of P2 may still
slice away the nonterminating loop at n3 when Eq. 2 is satisfied.

6.2 Computing various slices

Eq. 5 presented below extends Eq. 4 to compute the slice set for various types
of slices of a given PP program:

sliceC(G,
cd→, R→) =

⋃
n∈C
{m : m(

cd→ ∪ dd→)∗n} ∪
⋃

no|∃nr∈C. no
R→nr

{n : n(
cd→ ∪ dd→)∗no}

(5)
The equation above is parameterized by the control dependency relation

cd→, which may manifest as either a weak or strong control dependency relation
wcd−−→ or

scd−−→ respectively. Additionally, it involves the relation
R→, which can

either signify the observe-nontermination dependency relation
obntd−−−→ or only the

observe dependency relation
obsd−−−→. To calculate each class of slicing, relations

cd→ and
R→ must be instantiated as specified in Table 1.

For the nontermination and distribution insensitive slice, we disregard the
impact of nontermination entirely, as the semantics assume that all nonterminat-
ing loops eventually terminate in both the original program and the slice. Conse-

quently, this type of slice set is determined by the relation sliceC(G,
wcd−−→, obsd−−−→).

Conversely, for the nontermination insensitive distribution sensitive slice, we fo-
cus solely on nonterminating loops that influence the final distribution, disre-
garding those that are probabilistically independent of the return statement in
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a semantic context. Hence, the relation sliceC(G,
wcd−−→, obntd−−−→) computes these

slices by encompassing the following semantics: (1) the relation
wcd−−→ disregards

all nontermination effects while calculating the data and control dependency in

Eq. 5, and (2) the relation
obntd−−−→ selectively include all nonterminating instruc-

tions that affect the final distribution at the CFG node nr. The nontermination

sensitive slice is computed by the relation sliceC(G,
scd−−→, obntd−−−→), which cap-

tures the effect of nontermination during the computation of the normal data
and control dependency relation as well as during capturing the effect of the
dependency due to observe-nontermination instructions.

Next, we introduce the concept of next observable nodes, which was originally
developed within the realm of non-probabilistic programs. As we traverse the
CFG and encounter a node, it becomes important to identify the first reachable
nodes from the slice set along any CFG path. From an execution perspective,
this translates to determining the potential program instructions to be executed
next in the slice. The next observable nodes can be referred to as the next sliced-
node to be visited. However, we retain the term next observable for historical
reasons and ask readers not to confuse it with the observe instruction. This
concept is employed in building the sliced program from the CFG and the slice
set (see Def. 11), and serves as a crucial tool in formulating the proof framework
for verifying the correctness of program slicing (Sec. 7). The formal definition
of next observable nodes is as follows:

Definition 10 (Next Observable). Let n be a node in CFG G, and let SC be
a slice set. The set of next observable nodes obsSC (n) contains all nodes m ∈ SC
such that there exists a valid CFG path [n1..nk] with n1 = n, nk = m, and we
must have ni 6∈ SC for 1 ≤ i ≤ k − 1.

After computing the slice set SC = sliceC(G,
cd→, R→), we can compute the

slice P2 = code2(G) according to the following definition.

Definition 11 (Slice). Let G = (N,E, start) be the CFG of an original pro-
gram P1 = code1(G), let SC be the slice set, and let n ∈ N . We obtain the slice
P2 = code2(G) by constructing the function code2 as follows:

1. code2(n) = code1(n) if n ∈ SC .

2. code2(n) =skip if n /∈ SC and code1(n) is either an observe statement or a
(probabilistic) assignment statement.

3. code2(n) =true if n /∈ SC , code1(n) is a predicate node, |[succT(n)..nk]| <
|[succF(n)..nk]| and obs(n) = {nk}; code2(n) =false otherwise.

In a postprocessing phase, we can optimize the sliced program P2 by remov-
ing all skip statements followed by removing all predicate staments that are true
/false with an empty body.
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7 Slicing Correctness

In this section, we develop theories and a proof framework to verify the cor-
rectness of program slicing. We need some additional mathematical notations
to state the theorems and their proofs specifying the correctness criteria.

Let V ⊆ V be a subset of variables and let σ ∈ Σ. The restriction of the store
σ on V denoted σ|V is defined as σ|V = ∪x∈V {x 7→ σ(x)}. Let ΣV : V → Z
be a restriction of Σ such that σ|V ∈ ΣV is the restriction of σ ∈ Σ. The
projection of µ on V , denoted µ|V , is defined as µ|V (σV ) =

∑
σ∈Σ

σV =σ|V
µ(σ). In

what follows, we assume that P1 is the original program and P2 is the slice
computed according to Def. 11 from the slice set SC . We say that SC is closed

under the relations
dd−→,

cd−→, and
R−→ when it is computed according to Eq. 5.

7.1 Correctness Theorems

Definition 12 (Partial-equivalence of probabilistic stores). Let V ⊆ V
be a subset of variables, and let µ1, µ2 ∈ D(Σ) be pairs of probabilistic stores.
The relation µ1 4V µ2 is defined as follows:

µ1 4V µ2
def
≡ ∃q ∈ [0, 1] · µ1|V = q · µ2|V .

For every semantic transition Pi ` Γ → Γ ′ for i = 1, 2, we establish labeled

transitions Pi ` Γ
l→ Γ ′, where the label l is either a next observable node n as

defined in Def. 10 or the symbol τ . In the former case, Pi signifies an observable
move, while in the latter case, it denotes a silent move.

Definition 13 (Labeled Transition). Let SC be the slice set for the slice P2

of the original program P1. For all configurations Γ1 and Γ2 of program Pi for
i = 1, 2 such that Pi ` Γ1 → Γ2, we define

– Pi ` Γ1
n→ Γ2 if n = node(Γ1) and n ∈ SC

– Pi ` Γ1
τ→ Γ2 otherwise.

We write:

– Pi ` Γ1
τ⇒ Γ2 for the reflexive transitive closure of Pi ` Γ1

τ→ Γ2

– Pi ` Γ1
n⇒ Γ2 if there exists a configuration Γ such that Pi ` Γ1

τ⇒ Γ and
Pi ` Γ

n→ Γ2

The observable transition
n→ requires that n ∈ SC and thus it affects the slicing

criterion. We can now use the definition of labeled transition to define the weak
(bi)simulation as follows:

Definition 14 (Weak Simulation and Bisimulation). Consider the follow-
ing properties for relation Φ:

(i) if Γ1ΦΓ2 and P1 ` Γ1
n⇒ Γ ′1, then there exists Γ ′2 such that Γ ′1ΦΓ

′
2 and

P2 ` Γ2
n⇒ Γ ′2.
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(ii) if Γ1ΦΓ2 and P2 ` Γ2
n⇒ Γ ′2, then there exists Γ ′1 such that Γ ′1ΦΓ

′
2 and

P1 ` Γ1
n⇒ Γ ′1.

Φ is a weak simulation if (i) holds, and a weak bisimulation if both (i) and (ii)
hold.

The concept of relevant variables (RVs) is fundamental in program slicing
theories. It helps understanding the dependencies between values of program
variables at different program locations. Informally, a RV at a node is a pro-
gram variable that may affect the value of some variable in the slicing criterion.
Formally, we define RVs in our probabilistic context as follows:

Definition 15 (Relevant Variables). Let G be the CFG of a given program,

let C be the slicing criterion, and let SC = sliceC(G,
cd→, R→) be the slice set. The

set of RVs at any node n in the CFG G, denoted rv(n), comprises all variables
v specified in Cases (1) and (2) below:

1. v ∈ ref(n), and consequently, n ∈ SC , if any of the conditions (a)-(d) below
are satisfied on the CFG node n:
(a) Initialization: n ∈ C.
(b) Data dependency: def(n) ∩ rv(m) 6= ∅ for some m ∈ succ(n).

(c) Control dependency: n
cd−→ m holds for some m ∈ SC .

(d) Observe(-nontermination) dependency: n
R−→ nr holds for some nr ∈ C,

where
R−→ is specified in Table 1.

2. Continuation criteria: Additionally, v ∈ rv(m) is a RV at n if v 6∈ def(n),
where m ∈ succ(n).

The above definition is inherently recursive. As per condition 1(a) in the defi-
nition, the initial sets of RVs are established from ref(n) for n ∈ C. These initial
RVs are propagated backward through CFG due to the continuation criteria
(2) specified in the definition. New RVs are generated based on conditions 1(b)-
1(d), stemming from different dependencies, which are subsequently propagated
following the continuation criteria.

We now define the relation ' between the configurations of an original pro-
gram P1 and its slice P2 as follows:

Definition 16 ('). Consider any valid configurations Γ1 and Γ2 of any pro-
gram P1 and its slice P2, respectively, such that ni = node(Γi) and µi =
store(Γi) for i = 1, 2. Let SC be the slice set for the slice P2, and let V = rv(n1)
be the set of RVs at n1. The relation Γ1 ' Γ2 holds if the following conditions
are met:

1. obs(n1) = obs(n2), and
2. µ1 4V µ2, where the relation 4V is specified in Def. 12.

Theorem 1 below states that ' is either a weak simulation or a weak bisim-
ulation, depending on the dependence relations used to compute the slice set
SC :
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Theorem 1 (Correctness Condition). Assume that SC is computed accord-
ing to Eq. 5. The relation ' is a weak simulation relation if SC is closed under
dd−→,

wcd−−→, and
obsd−−−→. Otherwise, it is a weak bisimulation relation.

Theorem 2 stated below ensures that the slice P2 is a correct nontermination
(in)sensitive distribution (in)sensitive slice of P1 if' is a weak (bi)simulation due
to the slice set SC computed according to the conditions stated in Theorem 1.

Theorem 2 (Correctness).

1. P2 is a nontermination sensitive slice of P1 if SC is closed under
dd→,

scd→ and
obntd−−−→.

2. P2 is a nontermination insensitive distribution sensitive slice of P1 if SC is

closed under
dd→,

wcd→ and
obntd−−−→.

3. P2 is a nontermination insensitive distribution insensitive slice of P1 if SC

is closed under
dd→,

wcd→ and
obsd−−−→.

All proofs of theorems are provided in Appendix A.

8 Slicing Algorithm

In this section, we provide algorithms to compute various slices according to
Eq. 5. Our slicing algorithm is based on computing a partial slice set according
to Eq. 4 which is subsumed by Eq. 5.

Alg. 1 computes two things: (1) the set of CFG nodes DD that affects the
input CFG nodes S due to data dependency, and (2) updates the set of RVs
due to the data dependency criteria (1b) and the continuation criteria (2) in
Def. 15. It supports incremental computation of data dependencies on-demand
with improved amortized complexity. Since the computation is based on RVs,
for any subsets of CFG nodes S1 ⊂ S2, calling Alg. 1 first for S2 and then for S1

will result in less computation and faster termination for the second call. This is
because no new RVs will be identified in the second call. Conversely, if it is called
first for S1 and then for S2, the computation cost and termination time for the
second call will be proportional to that of computing the data dependency set
for S2 \ S1 for the first time.

Given a CFG G and a slicing criterion Cp, Alg. 2 calculates a partial slice
set Sp in accordance with Eq. 4. The closure(·) operation computes either the

weak or strong control closure specified by the control dependency type
cd→ for

the set S ∪Sp. It updates RVs according to the control dependency criteria (1c)
and continuation criteria (2) in Def. 15. We consider the use of standard control
closure algorithm as discussed in Sec. 3 and omit the details. All updates to the
set rv(·) are considered global by our algorithms.

Alg. 3 computes the slice set SC = sliceC(G,
cd→, R→) for a given CFG G and

a slicing criterion C in accordance with Eq. 5. The slice type takes any value
from the set {ns, ds, ni} representing nontermination sensitive, nontermination
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(in)sensitive distribution sensitive, and nontermination insensitive distribution

insensitive slice types. This type determines the type of control dependency
cd→

and the set Nobnt of CFG nodes representing observe-nontermination instruc-

tions. If slice type = ni, we consider the relation
R→=

obsd→ , and Nobnt includes only

the observe instructions. Otherwise,
R→=

obntd→ and Nobnt includes all CFG nodes
representing observe instructions and predicate nodes that may contribute to

divergence. The closure(G,
scd→, C∪{start}) operation encompasses all predicate

nodes that allow nonterminating executions.

Algorithm 1: compDD

Input : CFG G = (N ,E , start), rv(n) for all n ∈ N , set of nodes S ⊆ N
Output: DD - set of CFG nodes affecting S due to data dependency

1 DD = ∅
2 while (S 6= ∅) do
3 Remove m from S
4 forall (n ∈ pred(m)) do
5 if (def(n) ∩ rv(m) 6= ∅) then
6 DD = DD ∪ {n}
7 RVt = rv(n) ∪ (rv(m) \ def(n))

8 else
9 RVt = rv(m)

10 end
11 if (RVt 6⊆ rv(n)) then
12 rv(n) = rv(n) ∪ RVt

13 S = S ∪ {n}
14 end

15 end

16 end
17 return DD

Algorithm 2: compPSlice

Input : CFG G = (N ,E , start), set of nodes Cp ⊆ N , RVs rv(n) for

n ∈ N , and control dependency type
cd→

Output: partial slice set Sp
1 Sp = Cp, S = ∅
2 while Sp 6= S do
3 S = compDD(G, rv(·), Sp)
4 Sp = closure(G,

cd→, S ∪ Sp, rv(·))
5 end
6 return Sp

The partial slice set SC is computed at Line 9 by the compPSlice(·) operation,
which corresponds to the left part of the right hand side in Eq. 5. For the
rightmost part of that equation, compPSlice(·) is invoked repeatedly at Line 13
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Algorithm 3: compSlice

Input : CFG G = (N ,E , start), slicing criterion C, slice type
Output: slice set SC

1
cd→=

{
scd→ if slice type == ns
wcd→ otherwise

2 Let Nobnt ⊆ N contains all observe nodes
3 if slice type == ds then

4 scc = closure(G,
scd→, C ∪ {start})

5 Nobnt = Nobnt ∪ scc
6 end

7 rv(n) =

{
ref(n) if n ∈ C
∅ for all n 6∈ C

8 SC = compPSlice(G,C, rv(·), cd→)
9 forall (n ∈ Nobnt) do

10 rv aux(n) = ref(n)
11 rv aux(m) = ∅ for all m ∈ N and m 6= n

12 Sp = compPSlice(G, {n}, rv aux(·), cd→)
13 if (∃m ∈ SC ∩ Sp.rv(m) ∩ rv aux(m) 6= ∅) then
14 SC = SC ∪ Sp
15 rv(n) = rv(n) ∪ rv aux(n) for all n ∈ N

16 end

17 end
18 return SC

to compute the partial slice set Sp for the slicing criterion {n} for each n ∈ Nobnt.
Sets of RVs rv aux(·) are calculated during this process. Line 14 of the algorithm
determines the presence of a conditional dependency between the sets SC and
Sp, and SC and rv(·) are expanded by Sp and rv aux(·) if such a dependency
exists.

Computational complexity The worst-case computational complexity of
Alg. 1 is dominated by the cost of the while loop, which iterates as long as
new RVs are discovered. This loop iterates at most |N | + |E | times to transfer
the RVs. New RVs are introduced in the sets of RVs when a node is included
in the data dependency set DD. Since we cannot include more than |N | nodes
in DD, the loop iterates at most (|N | + |E |) × |N | times. In each iteration of
this loop, the worst case cost is O(|V |) where V is the set of program variables.
Moreover, according to Def. 2, any CFG node has at most two successors, and
thus |E | ≤ 2× |N |. Thus, the worst case complexity of Alg. 1 is O(|N |2|V |).

Alg. 2 uses Alg. 1 and the closure algorithm. The worst-case complexity
of the closure algorithm by the best baseline approaches [16, 14, 15] are O(|N |2)

and O(|N |3) if
cd→=

wcd→ and
cd→=

scd→ respectively. The while loop in this algorithm



Un
de
r B
lin
d
Re
vi
ew

27

iterates at most |N | times. Thus, The worst-case costs of Alg. 2 are O(|N |3|V |)
and O(|N |4) if

cd→=
wcd→ and

cd→=
scd→ respectively.

The dominating cost of Alg. 3 is the cost of the forall loop at Lines 9-17
that includes the call to Alg. 2 at Line 12, and this loop iterates at most |Nobnt|
times, where |Nobnt| ≤ |N | is the maximum number of predicate nodes involved
in nonterminating execution and observe nodes in the CFG. Thus, the worst-

case cost of this algorithms are O(|N |4|V |) and O(|N |5) if
cd→=

wcd→ and
cd→=

scd→
respectively.

However, these algorithms facilitate the incremental computation of data and
control dependencies by retaining the set of computed RVs. Thus, the amortized
complexity is better than the worst case complexity. For example, it has been
shown in [15] that the practical cost of the closure operation for weak control
dependence is closer to the |N | or |N |log|N | curve even though its worst-case
complexity is O(|N |2). We believe that our algoritm can be optimized that may
improve practical performance and the worst-case complexity by an order of
magnitude, by merging the computation of the left and the right part of Eq. 5
under the same iteration. We left this as a future work.

9 Related Work

Although numerous studies have delved into various aspects of slicing determin-
istic programs [13, 11, 28], relatively few have explored slicing in the context of
probabilistic programs.

Hur et al. [10] were the first to demonstrate the inadequacy of conventional
dependence-based slicing methods for probabilistic programs. They introduced
a novel dependence relation called observe dependence to account for the impact
of Observe statements on the slicing criteria. Their approach involves computing
slices by considering both conventional data and control dependences, alongside
observe dependence. They employ a denotational-style semantics of probabilis-
tic programs and offer mathematical proofs to establish the correctness of their
algorithm. Following this work, Amtoft and Banerjee [2, 1] investigated the slic-
ing of structured imperative probabilistic programs by representing them as
probabilistic control flow graphs. They distinguish between the slicing specifi-
cation and the slicing algorithm, ensuring that for any correct slice of a given
program, another slice exists where the program variables are probabilistically
independent. They present an algorithm to compute least slices and validate its
correctness by adopting the denotational style semantics of Kozen [12].

Navarro and Olmedo [19] adopted a novel approach to slicing probabilistic
programs, employing the slicing criterion defined by probabilistic assertions un-
like traditional slicing using program variables at designated program points.
They utilized the greatest pre-expectation transformer, analogous to Dijkstra’s
weakest pre-condition transformer, to retroactively propagate post-conditions
in backward slice computation. This specification based slicing approach yields
smaller-sized slices but demands increased computational overhead.
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While prior methods, with the exception of Navarro and Olmedo’s, failed to
differentiate between observation failure and nontermination, they all computed
only nontermination-insensitive, distribution-sensitive slices. In contrast, our ap-
proach computes both nontermination-insensitive and nontermination-sensitive
slices. We employ an operational-style semantics for probabilistic programs and
validate the correctness of our slicing technique using (bi)simulation, akin to
the approach outlined in Masud et al. [21].

10 Conclusion

In this study, we have significantly advanced the understanding of static slic-
ing in probabilistic programming by introducing a novel taxonomy and refined
semantics. By disentangling observation failure from nontermination, we have
identified various slicing variants, namely nontermination sensitive and nonter-
mination insensitive slicing. The latter is further divided into distribution sen-
sitive and distribution insensitive categories. The refined operational semantics
provides a clearer distinction between observation violations and nontermina-
tion, which is crucial for accurate program analysis. The distinction between
nontermination-sensitive and nontermination-insensitive slices is crucial for ac-
curately preserving the relative distribution and behavior of the original pro-
gram. Understanding these relationships helps ensure that the slicing process
maintains the intended probabilistic characteristics, whether or not nontermi-
nation is a factor. We have exemplified how a slice can meet multiple criteria,
demonstrating the nuanced interplay between distribution sensitivity and non-
termination properties. We introduced the concept of observe-nontermination
dependence that captures subtle dependencies, improving slicing accuracy.

We have developed a (bi)simulation-based proof framework that ensures the
correctness of the computed slices for all variants. Our (bi)simulation-based
proof framework verifies the correctness of these slices, and our algorithm offers
efficient incremental computation. These contributions enhance the theoreti-
cal and practical understanding of probabilistic programming, providing robust
tools for various applications.
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A Proof of theorems

For the proofs, we assume in general that the program P1 has nonzero final
distribution, since zero final distribution for all states would imply that the
program either never terminates or has no valid outcomes, which would make
it uninteresting or useless for practical purposes. We develop some auxiliary
lemmas to prove the theorems.

Lemma 1. Let SC be a slice set that is closed under
cd→. Then, for any CFG

node n, the set obs(n) is at most a singleton.

Proof. According to Def. 10, obs(n) = {n} if n ∈ SC , obs(n) = ∅ if no CFG
path from n includes a node from SC . The lemma holds in both cases.

Assume n /∈ SC and suppose, contrary to the lemma, that there exist distinct
nodes nk and ml such that nk,ml ∈ obs(n). This implies the existence of two
distinct CFG paths: [n = n1..nk] and [n = m1..ml] such that ni,mj 6∈ SC for
each 1 ≤ i < k and 1 ≤ j < l, and nk,ml ∈ SC . Without loss of generality, we
assume that no predicate node exists in either [n2..nk−1] or [m2..ml−1], as we
can always choose the closest predicate node to nk or ml as n.
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Then, node nk (or ml) postdominates all nodes between n and nk (resp.
ml). Given that n has another branch to node ml (resp. nk), n is not strictly

postdominated by either nk or ml. Thus, either n
cd→ nk or n

cd→ ml holds. In

any case, we arrive at the contradiction that n ∈ SC since SC is closed under
cd→.

Therefore, our initial assumption that obs(n) contains more than one element
when n /∈ SC is false, and the lemma is proven. ut

In what follows, we will abuse the notation and write obs(n) = m for obs(n) =
{m}.

Lemma 2. Let G be the CFG of program Pi for i = 1, 2, and let n be any CFG
node. If rv1(n) and rv2(n) are the sets of RVs of programs P1 and P2 at n, then
rv1(n) = rv2(n).

Proof. The proof follows from Def. 15 and 11.

Lemma 3. Let Pi ` 〈n1, µ1, p1〉
n1→ 〈n2, µ2, p2〉 be a semantic transition of pro-

gram Pi for i = 1, 2. Then, rv(n1) ⊇ rv(n2) \ def(n1) ∪ ref(n1).

Proof. According to the continuation criteria in Def. 11, rv(n′) \ def(()n) ⊆
rv(n). Moreover, n1 ∈ SC due to the observable transition, and thus ref(()n) ⊆
rv(n). ut

Lemma 4. Let Pi ` 〈n1, µ1, p1〉
τ→ 〈n2, µ2, p2〉 be a semantic transition of pro-

gram Pi for i = 1, 2. Then, rv(n) = rv(n′) if n is not a predicate node, and
rv(n) ⊇ rv(n′) otherwise.

Proof. As the semantic transition is a silent transition, n1 6∈ SC . In this case,
only the continuation criteria in Def. 11 is applicable. As a result, rv(n) = rv(n′)
if n is not a predicate node. If n is a predicate node, rv(n) ⊇ rv(n′) since n has
another successor that may contribute different RVs at n. ut

Lemma 5. Let µ1 and µ2 be probabilistic stores, V be any subset of program
variables, and V ′ ⊆ V . If µ1 4V µ2, then µ1 4V ′ µ2 holds, i.e.,

1. if µ1|V = ∃q ∈ [0, 1].q · µ2|V , then µ1|V ′ = ∃q ∈ [0, 1] · q · µ2|V ′ , and
2. if µ1|V ≤ µ2|V , then µ1|V ′ ≤ µ2|V ′ .

Proof. Consider µ1, µ2 : Σ → [0, 1] and Σ : V → Z. Recall that the set σ|X , the
restriction of the store σ ∈ Σ on a set X ⊆ V, is defined as σ|X = ∪x∈X{x 7→
σ(x)}. Let ΣX : X → Z be a restriction of Σ such that σ|X ∈ ΣX is the
restriction of σ ∈ Σ on X. The marginal distribution µi|V ′ for i = 1, 2 is defined
as:

µi|V ′(σV ′) =
∑

σV ∈ΣV ,σV |V ′=σV ′

µi|V (σV )

Given the first premise of the lemma, µ1|V (σV ) = q ·µ2|V (σV ) holds. Using this,
we derive the following equality for the marginal distribution:

µ1|V ′(σV ′) =
∑
σV ∈ΣV ,σV |V ′=σV ′ µ1|V (σV )

=
∑
σV ∈ΣV ,σV |V ′=σV ′ q · µ2|V (σV )[Premise (1) of the lemma]

= q · µ2|V ′(σV ′)
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By applying the second premise of the lemma, we obtain the inequality µ1|V ′(σV ′) ≤
µ2|V ′(σV ′) for all σV ′ . ut

Lemma 6. Let µ1, µ2, µ3 be probabilistic stores, and let V1, V2 be subsets of
program variables. If µ1 4V1

µ2, µ2 4V2
µ3, and V1 ⊆ V2, then µ1 4V1

µ3 holds.

Proof. Assume that µ1 4V1
µ2, µ2 4V2

µ3, and V1 ⊆ V2. By applying Lemma 5,
we can derive µ2 4V1 µ3 from µ2 4V2 µ3 and V1 ⊆ V2. Then, the transitivity of
the partial-equivalence relation trivially holds.

Lemma 7. Let Pi ` 〈n1, µ1, p1〉 → 〈n2, µ2, p2〉 be a semantic transition of pro-
gram Pi for i = 1, 2. If codei(n1) is skip, true, or false , then we must have
µ1 = µ2.

Proof. According to the SKIP, COND-T, and COND-F semantic rules in
Fig. 5, µ1 = µ2 trivially holds. ut

Lemma 8. Let P1 ` 〈n, µ1, p1〉
n→ 〈n′1, µ′1, p′1〉 and P2 ` 〈n, µ2, p2〉

n→ 〈n′2, µ′2, p′2〉
be two labeled transitions of P1 and its slice P2, and let V = rv(n) and V ′ =
rv(n′1). If µ1 4V µ2, then µ′1 4V ′ µ′2 and n′1 = n′2 hold.

Proof. According to the premise of the lemma, n ∈ SC . Thus, code1(n) =
code2(n) due to Def. 11. Let ΣV : V → Z be a restriction of Σ to a subset of
variables V . We prove µ′1 4V ′ µ′2 by analyzing the following cases:

– code1(n) is an assignment statement x := e. According to the ASSIGN rule
in Fig. 5, we obtain

µ1(σ) = µ′1(σ[x 7→ a])

for all σ ∈ Σ where a = JeKσ. Since this equality is point-wise, for any
σV ∈ ΣV , we obtain∑

σ∈Σ,σ|V =σV

µ1(σ) =
∑

σ∈Σ,σ|V =σV

µ′1(σ[x 7→ a])

Consequently, µ1|V (σV ) = µ′1|V (σV ) for all σV ∈ ΣV . Similarly, µ2|V (σV ) =
µ′2|V (σV ) for all σV ∈ ΣV .

According to the premise of the lemma, µ1 4V µ2, which leads to µ′1 4V µ′2.
According to Lemma 3, V ′ \ {x} ⊆ V , and consequently, µ′1 4V ′\{x} µ

′
2 due

to Lemma 5. Since n ∈ SC , x ∈ V ′ and ref(n) ⊆ V according to Def. 15.
As µi(σ) = µ′i(σ[x 7→ a]) for all σ ∈ Σ and i = 1, 2 with a = JeKσ, we can
derive the following from µ′1 4V ′\{x} µ

′
2:

µ′1|V ′(σV ′\{x} ∪ {x 7→ a}) = µ′2|V ′(σV ′\{x} ∪ {x 7→ a)

Therefore, µ′1 4V ′ µ′2.
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– code1(n) is a probabilistic assignment x :≈ d . Let Z = V ′ \ {x}. As n ∈
SC , Z ⊆ V (Lemma 3) and x ∈ V ′ according to Def. 15. Assume that
µ1|V (σV ) = q · µ2|V (σV ) due to the premise µ1 4V µ2 of the lemma, where
q ∈ [0, 1] and σV ∈ ΣV . Since Z ⊆ V , from Lemma 5, for all σZ ∈ ΣZ ,

µ1|Z(σZ) = q · µ2|Z(σZ)

According to the RANDOM rule in Fig. 5, we obtain

µ′i(σ) =
∑
σ=σ′[x 7→v] µX(σ(x)) · µi(σ′)

for all σ ∈ Σ and i = 1, 2, where the distribution function d assigns random
values v = σ(x) with probabilities given by µX . The marginal distribution
µ′i|V ′ , i = 1, 2 for all σV ′ ∈ ΣV ′ is as follows:

µ′i|V ′(σV ′) =
∑

σ∈Σ,σV ′=σ|V ′

µX(σV ′(x)) · µi|Z(σ|Z).

Thus,

µ′1|V ′(σV ′) =
∑
σ∈Σ,σV ′=σ|V ′ µX(σV ′(x)) · µ1|Z(σ|Z)

=
∑
σ∈Σ,σV ′=σ|V ′ µX(σV ′(x)) · q · µ2|Z(σ|Z)

= q ·
∑
σ∈Σ,σV ′=σ|V ′ µX(σV ′(x)) · µ2|Z(σ|Z)

= q · µ′2|V ′(σV ′)

Thus µ′1 4V ′ µ′2 holds in this case.
– code1(n) = observe b. The relation µ1 4V µ2, which holds due to the pre-

condition of the lemma, implies µ1|V = q · µ2|V for some q ∈ [0, 1].
According to the Observe rule in Fig. 5, for all σ ∈ Σ, either µi(σ) = µ′i(σ)
if JbKσ = true, and µ′i(σ) = 0 otherwise for i = 1, 2. Let A ⊆ Σ be the set
of states of node n where µi equals µ′i.
Then, we derive the following calculation for all σV = σ|V where σ ∈ Σ:

µ1|V (σV ) = q · µ2|V (σV )∑
σ∈Σ,σV =σ|V µ1(σ) = q ·

∑
σ∈Σ,σV =σ|V µ2(σ)∑

σ∈A,σV =σ|V µ1(σ) = q ·
∑
σ∈A,σV =σ|V µ2(σ) [same relation holds for A ⊆ Σ]

µ′1|V (σV ) = q · µ′2|V (σV )

Thus, µ′1 4V µ′2 holds. According to Lemma 3, V ′ ⊆ V , and consequently,
µ′1 4V ′ µ′2 holds due to Lemma 5.

– code1(n) = b. The proof is similar to the case for code1(n) = observe b due
to the fact that the transition of probabilistic states in COND-T, COND-
F, and Observe rules in Fig. 5 are similar, and V ′ ⊆ V (Lemma 3). Thus,
µ′1 4V ′ µ′2 follows from µ1 4V µ2 as above.

– code1(n) =skip. This case is not possible since n ∈ SC .

Node n has only one successor in all cases except when code1(n) = b. For any
σ ∈ Σ, if JbKσ evaluates to true/false in P1, it also evaluates to the same in P2,
and vice versa. While the distributions µ1(σ) and µ2(σ) may differ, they satisfy
µ1(σ) 4V µ2(σ). Therefore, n′1 = n′2 in all cases. ut
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Lemma 9. Let P1 ` 〈n1, µ1, p1〉
τ→ 〈n2, µ2, p2〉, let V = rv(n1) and V ′ =

rv(n2), and let µ3 be any probabilistic store. If µ1 4V µ3, then µ2 4V ′ µ3 holds.

Proof. Since the transition is a silent transition, n1 6∈ SC . We conduct the
following case analysis where V = V ′ holds for all but the last case according
to Lemma 4.

– code1(n1) = x := e. According to the ASSIGN rule in Fig. 5, we obtain
µ1(σ) = µ2(σ[x 7→ a]) for all σ ∈ Σ where a = JeKσ. For any σV ∈ ΣV , we
obtain ∑

σ∈Σ,σ|V =σV

µ1(σ) =
∑

σ∈Σ,σ|V =σV

µ2(σ[x 7→ a]),

and consequently, µ1|V (σV ) = µ2|V (σV ). We conclude µ2|V = q · µ3|V if
µ1 4V µ3 holds due to µ1|V = ∃q ∈ [0, 1].q · µ3|V .

– code1(n1) = x :≈ d . According to the RANDOM rule in Fig. 5,

µ2(σ) =
∑
σ=σ′[x7→v] µX(v) · µ1(σ′)

for all σ ∈ Σ, and the distribution function d assigns random values v = σ(x)
with probabilities given by µX . x /∈ V as otherwise we would have n1 ∈ SC .
The marginal distribution µ2|V for all σV ∈ ΣV is as follows:

µ2|V (σV ) =
∑

σ∈Σ,σV =σ|V

µX(σV (x)) · µ1(σ).

If µ1|V = q · µ3|V for some q ∈ [0, 1], we can derive the following:

µ2|V (σV ) =
∑
σ∈Σ,σV =σ|V µX(σV (x)) · µ1(σ)

= µX(σV (x)) ·
∑
σ∈Σ,σV =σ|V µ1(σ)

= µX(σV (x)) · µ1|V (σV )
= µX(σV (x)) · q · µ3|V (σV )
= q′ · µ3|V (σV ) for some q′ ∈ [0, 1]

– code1(n1) = observe b. According to the Observe rule in Fig. 5, for all
σ ∈ Σ, either µ2(σ) = µ1(σ) if JbKσ = true, and µ2(σ) = 0 otherwise. Let
A ⊆ Σ be the set of configurations where µ2 equals µ1. Since µ2(σ) = µ1(σ)
for σ ∈ A, we can derive the following:

µ2|V (σV ) =
∑
σ∈A,σV =σ|V µ1(σ)

=
∑
σ∈A,σV =σ|V

µ1(σ)∑
σ∈Σ,σV =σ|V

µ1(σ)

∑
σ∈Σ,σV =σ|V µ1(σ)

= r · µ1|V (σV )
= r · q · µ3|V (σV )
= q′ · µ3|V (σV )

where, r ∈ [0, 1] is essentially the proportion of the mass of µ1|V that is
accounted for by the subset A, and q′ = r · q ∈ [0, 1].



Un
de
r B
lin
d
Re
vi
ew

35

– code1(n1) = skip . According to the Skip rule in Fig. 5, µ1 = µ2. Thus,
µ2 4V ′ µ3 follows from µ1 4V µ3.

– code1(n1) = b. By following the calculation for the case code1(n1) = observe b,
since the transition of probabilistic states in COND-T, COND-F, and Ob-
serve rules in Fig. 5 are similar, we can prove that µ2 4V µ3. According to
Lemma 3, V ′ ⊆ V . Thus, µ2 4V ′ µ3 holds according to Lemma 5.

ut

Lemma 10. Let SC be the slice set which is closed under
cd→, and let Γ1 be any

configuration of program P2 at CFG node n1. If obs(n1) = nk and n1 6= nk,

then there exists configuration Γk of node nk such that P2 ` Γ1
τ⇒ Γk.

Proof. Suppose obs(n1) = nk. Consequently, there exists a CFG path n1, . . . , nk
such that nk ∈ SC and ni 6∈ SC for 1 ≤ i < k. Let’s assume, without loss of
generality, that this path is the smallest one. Since ni 6∈ SC for 1 ≤ i < k,
code2(ni) must be skip, true, or false as per Def. 11. If code2(ni) is true (or false
), then node ni+1 is in the true (resp. false) branch of node ni, i.e., succT (ni) =
ni+1 (resp. succF (ni) = ni+1). According to the semantic rules illustrated in
Fig. 5, a sequence of configurations Γ1, . . . , Γk for the nodes n1, . . . , nk exists
such that P2 ` Γi ⇒ Γi+1 for 1 ≤ i < k. As ni 6∈ SC for 1 ≤ i < k, we obtain the

labeled transition P2 ` Γi
τ→ Γi+1 for 1 ≤ i < k. Consequently, P2 ` Γ1

τ⇒ Γk
holds. ut

Lemma 11. Let Γ1 and Γ2 be valid configurations of programs P1 and P2 such
that Γ1 ' Γ2. If there exists a transition P1 ` Γ1

n1→ Γ3, then a transition
P2 ` Γ2

n1⇒ Γ4 also exists such that Γ3 ' Γ4.

Proof. Let µi = store(Γi) and ni = node(Γi) for 1 ≤ i ≤ 4. First, we prove

that the labeled transition P2 ` Γ2
n1⇒ Γ4 exists. The transition P1 ` Γ1

n1→ Γ3

yields n1 ∈ SC , and consequently, obs(n1) = n1. The relation Γ1 ' Γ2 yields
obs(n1) = obs(n2) = n1.

Let n2 6= n1. By Lemma 10, obs(n2) = n1 indicates the existence of a

configuration Γ k of n1 such that P2 ` Γ2
τ⇒ Γ k. Thus, a sequence of configu-

rations Γ 1, . . . , Γ k of P2 exists such that ni = node(Γ i) and µi = store(Γ i) for

i = 1, . . . , k where Γ 1 = Γ2 and nk = n1. The relation P2 ` Γ i
τ→ Γ i+1 holds

for all i = 1, . . . , k − 1, implying ni /∈ SC and code2(ni) is skip, true, or false
as per Def. 11. Consequently, µi = µi+1 for all 1 ≤ i ≤ k due to Lemma 7.

As Γ1 ' Γ2, we have µ1 4V µ2 where V is the set of RVs at n1 in P1. Since
µ2 = µ1 and µ1 = µk, we obtain µ1 4V µk. If n2 = n1, then Γ2 = Γ k and
µ1 4V µk trivially hold due to the precondition of the lemma. Hence, either
exists q ∈ [0, 1] such that µ1|V = q.µk|V or µ1|V ≤ µk|V .

Therefore, the execution of P1 and P2 converge at n1, and the relative prob-
ability distribution µk|V of P2 at n1 is at least equal to the relative probability

distribution µ1|V of P1. Consequently, if the transition P1 ` Γ1
n1→ Γ3 holds, the

probability of P2 taking the same path as P1 from n1 is higher even if n1 is a
predicate node or represents an observe statement. Thus, a configuration Γ4 of
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P2 exists such that n4 = n3 and P2 ` Γ k → Γ4. Since n1 ∈ SC , we thus have
P2 ` Γ k

n1→ Γ4, and consequently, we get the transition P2 ` Γ2
n1⇒ Γ4.

As (i) obs(n3) = obs(n3) holds trivially, and (ii) µ3 4rv(n3) µ4 according to
Lemma 8, the relation Γ3 ' Γ4 holds according to the definitions of '. ut

Lemma 12. Assume that SC is closed under
dd−→,

cd−→, and either
obntd−−−→ or

obsd−−−→. Let Γ1 and Γ2 be valid configurations of programs P1 and P2 such that
Γ1 ' Γ2. If there exists a transition P1 ` Γ1

n⇒ Γ3, then a transition P2 ` Γ2
n⇒

Γ4 also exists such that Γ3 ' Γ4.

Proof. Consider that the transition P1 ` Γ1
n⇒ Γ3 exists. Thus, a sequence of

silent transitions P1 ` Γ i
τ→ Γ i+1 for 1 ≤ i < k, and the transition P1 ` Γ k

n→
Γ3 exist such that Γ 1 = Γ1. Let µi = store(Γi), ni = node(Γi), µ

j = store(Γ j),
and nj = node(Γ j) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ k. First, we establish the relation
Γ k ' Γ2.

The silent transition P1 ` Γ i
τ→ Γ i+1 implies ni /∈ SC . The transition P1 `

Γ k
n→ Γ 3 indicates that nk = n ∈ SC . Consequently, obs(n1) = obs(nk) = n.

The relation Γ1 ' Γ2 implies obs(n1) = obs(n2), and hence obs(nk) = obs(n2).
This proves the first precondition for the relation Γ k ' Γ2.

Γ1 ' Γ2 implies that µ1 4V µ2 where V = rv(n1). By repeatedly applying

Lemma 9 for the transition P1 ` Γ i
τ→ Γ i+1 for 1 ≤ i < k sequentially, we

conclude µk 4V ′ µ2, where V ′ = rv(nk). Consequently, Γ k ' Γ2 holds. As

P1 ` Γ k
n→ Γ3 exists, the lemma is proven by lemma 11. ut

Lemma 13. Assume that SC is closed under
cd−→. Let Γ1 be any configuration

of program P1 at node n1. If there exists a node nk such that obs(n1) = nk and

n1 6= nk, then there exists a configuration Γk at node nk such that P1 ` Γ1
τ⇒ Γk

and store(Γk) 4V store(Γ1), where V = rv(nk).

Proof. Assume that obs(n1) = nk. Thus, there exists a CFG path n1, . . . , nk
such that ni 6∈ SC for all 1 ≤ i < k, and nk ∈ SC . Let Γi = 〈ni, µi, pi〉 be any
configuration of node ni. Let Vi = rv(ni) for 1 ≤ i ≤ k, and let Vk = V .

First, we prove that P1 ` Γ1
τ⇒ Γk exists. If ni is a skip, assignment, or

random assignment instruction, then there always exists a transition P1 ` Γi →
Γi+1. Let code1(ni) = observe b. There must exist a state σ ∈ Σ such that
JbKσ = true, thereby ensuring a transition P1 ` Γi → Γi+1 exists, as otherwise,
it contradicts our general assumption that the program has nonzero final distri-
bution and practically useful. If code1(ni) = b, then a transition P1 ` Γi → Γi+1

exists, where either ni+1 = succT(ni) or ni+1 = succF(ni). Since ni /∈ SC , we

have the transition P1 ` Γi
τ→ Γi+1, and thus, P1 ` Γ1

τ⇒ Γk exists.
The relation µ1 4V1

µ1 holds trivially. By applying Lemma 9 sequentially

to the transitions P1 ` Γi
τ→ Γi+1 for i = 1, . . . , k − 1, we infer that µi 4Vi µ1,

and consequently, µk 4Vk µ1 holds. ut

Lemma 14. Assume that SC is closed under
cd−→. Let Γ1 and Γ2 be valid con-

figurations of programs P1 and P2 respectively, such that Γ1 ' Γ2. If there exists
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a transition P2 ` Γ2
n2→ Γ4, then there also exists a transition P1 ` Γ1

n2⇒ Γ3

such that Γ3 ' Γ4.

Proof. Let µi = store(Γi) and ni = node(Γi) for 1 ≤ i ≤ 4. Given the transition

P2 ` Γ2
n2→ Γ4, we have n2 ∈ SC , and thus obs(n2) = n2. Since Γ1 ' Γ2, it

follows that obs(n1) = obs(n2) = n2.

Assume n1 6= n2. By Lemma 13, there exists a configuration Γ at n2 such
that the labeled transition P1 ` Γ1

τ⇒ Γ holds, and µ 4V µ1, where V =
rv(node(Γ )) and µ = store(Γ ). Since obs(n1) = n2, n1 /∈ SC , and V ⊆ V ′ =
rv(n1) due to the continuation criteria in Def. 15). We have µ1 4V ′ µ2 due
to Γ1 ' Γ2. Thus, µ 4V µ2 holds (Lemma 6). If n2 = n1, then Γ1 = Γ and
µ 4V µ2 holds due to the precondition of the lemma.

According to Lemma 8, there exists a transition P1 ` Γ
n2→ Γ3 such that

n3 = n4 and µ3 4V ′′ µ4 where V ′′ = rv(n3). Therefore, the transition P1 `
Γ

n2⇒ Γ3 exists. Furthermore, since n3 = n4, obs(n3) = obs(n4) trivially holds,
and consequently, Γ3 ' Γ4 holds according to the definitions of '. ut

Lemma 15. Assume that SC is closed under either
scd→ or both

wcd→ and
obntd−−−→.

Let Γ1 and Γ2 be valid configurations of programs P1 and P2 such that Γ1 ' Γ2.
If there exists a transition P2 ` Γ2

n⇒ Γ4, then a transition P1 ` Γ1
n⇒ Γ3 also

exists such that Γ3 ' Γ4.

Proof. Let µi = store(Γi) and ni = node(Γi) for 1 ≤ i ≤ 4. If n2 = n, the

lemma follows directly from Lemma 14. Assume n2 6= n and that P2 ` Γ2
n⇒ Γ4.

Therefore, there exists a sequence of silent transitions P2 ` Γ i
τ→ Γ i+1 for

1 ≤ i < k and a transition P2 ` Γ k
n→ Γ4 such that Γ 1 = Γ2. Let µi = store(Γ i)

and ni = node(Γ i) for 1 ≤ i < k.

First, we establish the relation Γ1 ' Γ k. The silent transition P2 ` Γ i
τ→

Γ i+1 implies ni /∈ SC . The transition P2 ` Γ k
n→ Γ4 indicates that nk = n ∈ SC .

Consequently, obs(n2) = obs(nk) = n. The relation Γ1 ' Γ2 implies obs(n1) =
obs(n2), and hence obs(n1) = obs(nk). This proves the first precondition for the
relation Γ1 ' Γ k.

Next, we establish the relation µ1 4V µk, where V = rv(n1). We have one
of the following scenarios:

1. SC is closed under
scd→. Since obs(n2) = n = nk, all CFG paths from n2 must

converge at nk before going through SC . There is no diverging path from ni

for any 1 ≤ i < k, as otherwise ni would be included in SC due to
scd→.

2. SC is closed under
wcd→ and

obntd−−−→. There may have a diverging branch from
node ni for any 1 ≤ i < k. However, either this branch does not include a
node from SC or it does after reaching ni. As otherwise, ni would be included

in SC due to
wcd→ . Alternatively, no diverging branch from any node ni exists

that affect the slicing criterion. Otherwise, ni would be included in SC due

to
obntd−−−→.
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In any case, ni /∈ SC , and code2(ni) is skip, true, or false according to Def. 11.
By successive application of Lemma 7, we obtain µ2 = µk. Therefore, µ1 4V µk

follows from the relation µ1 4V µ2, and consequently, Γ1 ' Γ k holds.

Since P2 ` Γ k
n→ Γ4 holds, the lemma is proven by Lemma 14.

ut

Proof (Theorem 1). Let Γ1 and Γ2 be valid configurations of programs P1 and
P2, and let Γ1 ' Γ2 holds.

1. Assume that there exists a labeled transition P1 ` Γ1
n⇒ Γ ′1. By lemma 12,

P2 ` Γ2
n⇒ Γ ′2 also exists such that Γ ′1 ' Γ ′2. This proves that ' is a

simulation relation.

2. The proof in (1) is one direction of the bisimulation as it also holds when SC

is closed under either
scd−−→, or both

wcd−−→ and
obntd−−−→. For the other direction,

let us assume that the labeled transition P2 ` Γ2
n⇒ Γ4 exists. By Lemma 15,

a transition P1 ` Γ1
n⇒ Γ3 also exists such that Γ3 ' Γ4.

ut

Proof (Theorem 2). Let Γ0 = 〈start , µ0, 0〉 and Γ ′0 = 〈start , µ′0, 0〉 be the ini-
tial configurations of P1 and P2, and let V be the set (and subset) of program
variables in P2 (resp. P1). We can safely assume the following: (1) obs(start) =
obs(start) trivially holds, (2) both programs start execution from equivalent
probabilistic stores, and thus µ0|V = µ′0|V holds, (3) rv(node(Γ0)) = rv(node(Γ ′0)) ⊆
V , and consequently, (4) µ0 4rv(start) µ

′
0 according to Lemma 5. Thus, Γ0 ' Γ ′0

holds (Def. 16). According to Theorem 1, ' is either a weak simulation or a
weak bisimulation relation.

If ' is a weak simulation relation, for any finite sequence of configurations
Γ0, . . . , Γk of P1, a corresponding sequence Γ ′0, . . . , Γ

′
k of P2 exists such that

Γk, Γ
′
k are final configurations, where P1 ` Γi

ni⇒ Γi+1 and P2 ` Γ ′i
ni⇒ Γ ′i+1 hold

for all 0 ≤ i < k − 1, and P1 ` Γk−1
τ⇒ Γk and P2 ` Γ ′k−1

τ⇒ Γ ′k hold. We
can deduce from Theorem 1 that Γk−1 ' Γk−1, which implies store(Γk−1) 4V ′

store(Γ ′k−1) for V ′ = rv(node(Γk−1)). As P1 ` Γk−1
τ⇒ Γk, we successively

apply Lemma 9 and obtain store(Γk) 4V ′′ store(Γ ′k−1) for V ′′ = rv(node(Γk)).

As P2 ` Γ ′k−1
τ⇒ Γ ′k, we have a sequence of silent transitions P2 ` Γ ik

τ→ Γ i+1
k

for 1 ≤ i ≤ l such that Γ 1
k = Γ ′k−1, Γ lk = Γ ′k. Let mi = node(Γ ik) and mk is

the final return node. mi /∈ SC for all i due to the silent transitions, code2(mi)
is skip, true, or false (Def. 11), and thus store(Γ ik) = store(Γ i+1

k ) according
to Lemma 7. Thus, we conclude that store(Γk) 4V ′′ store(Γ ′k). If ' is a weak

bisimulation relation, the reverse is also true. In particular, for every P2 ` Γ ′i
ni⇒

Γ ′i+1, there exists P1 ` Γi
ni⇒ Γi+1 for 1 ≤ i < k such that Γi ' Γ ′i holds.

By similar arguments as above, we can conclude that store(Γk) 4V ′′ store(Γ ′k)
holds. Since nk ∈ C, and V ′′ = rv(nk) = ref(nk) according to Def. 15, this
implies that there exists q ∈ [0, 1] such that (JP1Kµ0)|V ′′ = q · (JP2Kµ′0)|V ′′ .

Next, we have the following cases:



Un
de
r B
lin
d
Re
vi
ew

39

1. Assume that SC is closed under
dd→,

scd→ and
obntd−−−→. Thus, ' is a weak bisim-

ulation relation (Theorem 1). Any node that is part of a nonterminating

execution is captured in SC due to the relation
scd→. Thus, for any infinite

sequence of configurations Γ0, Γ1, . . . of P1, there exists an infinite sequence
of configurations Γ ′0, Γ

′
1, . . . of P2, and vice versa, such that P1 ` Γi

ni⇒ Γi+1,

P2 ` Γ ′i
ni⇒ Γ ′i+1, and Γi ' Γ ′i for all i ≥ 0. Assume that the execution

diverges from node ni. The transition P1 ` Γi
ni⇒ Γi+1 implies P1 ` Γi

τ⇒ Γ

and P1 ` Γ
ni→ Γi+1. Similarly, we have P2 ` Γ ′i

τ⇒ Γ ′ and P1 ` Γ ′
ni→ Γ ′i+1.

Thus, store(Γi) 4S store(Γ ′i ) and store(Γ ′i ) 4S store(Γi) hold, where
S = rv(node(Γi)) according to Lemma 8. This implies that store(Γ ′i )|S =
store(Γi)|S . Thus, the nonterminating execution in P1 and P2 accumulates
the same distribution mass. Therefore, Pr[P1(µ0) ∈ ⇑] = Pr[P2(µ′0) ∈ ⇑].
Also, (JP1Kµ0)|V ′′ = q · (JP2Kµ′0)|V ′′ for V ′′ = rv(nk) as shown above. Thus,
P2 is a nontermination sensitive slice of P1 according to Eq. 1.

2. Assume that SC is closed under
dd→,

wcd→ and
obntd−−−→. Then, according to The-

orem 1, ' is a weak bisimulation relation, and (JP1Kµ0)|V ′′ = q ·(JP2Kµ′0)|V ′′

holds for V ′′ = rv(nk) and q ∈ [0, 1]. By using the same argument as (1)
above, we can show that for all diverging executions at node ni in both
P1 and P2, store(Γ ′i )|S = store(Γi)|S where S = rv(node(Γi)), and same
distribution mass for nontermination is accumulated in this case. However,

since SC is closed under
wcd→ and

obntd−−−→, not all node ni involved in diverging
execution is included in SC . While P1 accumulates part of the distribution
mass for nonterminating execution from ni, no nonterminating execution
exists from ni in P2 since codegni2 is true or false that leads an execution
from ni to obs(ni). As a result, Pr[P1(µ0) ∈ ⇑] ≥ Pr[P2(µ′0) ∈ ⇑]. Thus, P2

is a nontermination insensitive distribution sensitive slice of P1 according to
Eq. 3.

3. Assume that SC is closed under
dd→,

wcd→ and
obsd−−−→. Then, ' is a weak simu-

lation relation (Theorem 1). Consider any node ni such that code1(ni) = b
that may involve in nonterminating execution in P1. We have the following
cases:
– ni /∈ SC . Therefore, code2(ni) is set to true or false , which leads all

executions of P2 going through ni to the closest observable node obs(ni)
(see Def. 11). Thus, ni cannot cause any nonterminating execution in
P2. On the other hand, P1 may have nonterminating execution due to

ni not being captured in SC , which is only closed under
wcd→ and

obsd−−−→.
– ni ∈ SC . There may have diverging executions through ni in both P1

and P2. However, we argue that it is impossible to have a diverging
execution from ni in P2 but not in P1. If so, assume that there exist
sequences of configurations Γ0, . . . , Γk, . . . and Γ ′0, . . . , Γ

′
k, . . . such that

P1 ` Γi
ni⇒ Γi+1, P2 ` Γ ′i

ni⇒ Γ ′i+1 for all 1 ≤ i < k, but P1 ` Γk
n⇒ Γk+1,

P2 ` Γ ′k
n′

⇒ Γ ′k+1, and n 6= n′. This implies that there exists σ ∈ Σ
for P1 that has no corresponding store σ′ ∈ ΣV for P2 at nk such that

JbKσ = JbKσ′. As SC is closed under
dd→, this is impossible.
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Thus, P1 may have more nonterminating executions than P2, and there-
fore Pr[P1(µ0) ∈ ⇑] ≥ Pr[P2(µ′0) ∈ ⇑]. Moreover, since ' is a weak simu-
lation relation, for every final configuration Γk of P1, a corresponding fi-
nal configuration Γ ′k of P2 exists such that store(Γk) 4V ′′ store(Γ ′k) holds
as proved above. However, the reverse may not be true always since P2

may have a final configuration Γ ′k and a corresponding execution in P1 di-
verges. Thus, there may have a store σV ∈ ΣV such that store(Γ ′k)(σV ) > 0,
but a corresponding store σ ∈ Σ exists such that store(Γk)(σ) = 0. Thus,
(JP1Kµ0)|V ′′ ≤ (JP2Kµ′0)|V ′′ holds, but (JP1Kµ0)|V ′′ = q · (JP2Kµ′0)|V ′′ may
not hold for V ′′ = rv(nk) and q ∈ [0, 1]. As Eq. 2 holds but Eq. 3 does not,
the slice P2 is a nontermination insensitive distribution insensitive slice of
P1.

ut


