
Non-termination (in)sensitive slicing for
probabilistic programs

Abu Naser Masud1 and Federico Olmedo2

1 Mälardalen University, Sweden,
abu.naser.masud@mdu.se

2 University of Chile, Chile
federico.olmedo@dcc.uchile.cl

Abstract. The probabilistic programming language offers a high de-
gree of flexibility through its expressive syntax and semantics. It in-
cludes specialized programming primitives for random assignments and
“observe” statements, crucial for conditioning the model on observed
data. This study delves into several aspects of slicing probabilistic pro-
grams (PP), spanning slice semantics, different static slicing types, slic-
ing algorithms, and proof of correctness. Previous research on slicing PP
adopt a program semantics that conflates observation failure with non-
termination, yielding nontermination insensitive slices. However, obser-
vation failure and nontermination are distinct phenomena. By disen-
tangling them in the semantics, we have identified several variants of
static slicing, namely nontermination sensitive and nontermination in-
sensitive slicing. The latter is further categorized into distribution sen-
sitive and distribution insensitive, based on whether the slice strictly
preserves the original program’s outcome distribution, even in nonter-
minating scenarios, or weakly considers only terminating executions.
We have provided semantic characterization of all the variants and de-
vised novel algorithms to compute them by introducing a new concept
called observe-nontermination dependence. Additionally, we have devel-
oped (bi)simulation based proof techniques to verify the correctness of
computing all slice variants. Our contributions deepen the understand-
ing of static slicing in probabilistic programming, potentially impacting
various application domains.

1 Introduction

Program slicing plays a significant role in the process of software development.
Put simply, the goal of slicing is, given a program and a set of variables of in-
terest at a given program point, to identify the program fragments that can be
removed without afecting the variable values at said point [23]. To identify such
fragments, slicing techniques primarily rely on a static analysis of data and con-
trol dependencies among variables. As so defined, program slicing have proved
particularly useful in tasks such as testing, program understanding, program
debugging and extraction of reusable components, to name a few [25].

In this work, we focus, in particular, on slicing over probabilistic programs.
Loosely speaking, probabilistic programs are programs written in ordinary pro-
gramming languages that, on top of their usual constructs, offer the possibility
of i) sampling values from probability distributions (aka random sampling) and
ii) conditioning the value of variables through so-called observe statements (aka
conditioning).

Probabilistic programs have found application in numerous domains. They
are central in the field of machine learning due to their compelling properties
for representing probabilistic models [8]. They are the cornerstone of modern
cryptography —all encryption schemes are by nature probabilistic [9]—, and also
of traditional randomized algorithms [14]. Finally, they are critical for privacy
pourposes, as demonstrated by the notion of differential privacy [6].

Nevertheless, the research on methods for slicing probabilistic programs has
been rather scarce. Hur et al. [10] developed the first slicing technique for (im-
perative) probabilistic programs. They showed that to achieve correct slices,
traditional data and control dependence must be complemented with a new
form of dependence accounting for the (more intricate) effects of conditioning.
A few years later, Amtoft and Banerjee [2] introduced the notion of probabilis-
tic control-flow graphs, which allows a direct adaptation of conventional slicing
machinery to the case of probabilistic programs.

Both approaches [10] and [2] suffer, however, from several limitations. First,
they adopt a program semantics that conflates observation violation with non-
termination —two phenomena that, in our view, should be distinguished. Sec-
ond, they support only a particular form of slicing known as non-termination
insensitive. In order to yield potentially smaller sliced programs, this form of
slicing allows non-terminating executions in the original program to “become”
terminating in the sliced program. While this may be sensible for some appli-
cations, in other applications it is of utter relevance that the original and the
sliced program share the same termination behaviour. Finally, the form of (non-
termination insensitive) slicing they support is overly restrictive, leaving out
program slices that one would arguably deem valid. Section 2 further expands
on these shortcoming, while also providing illustrative examples.

Motivated by these limitations, in this paper, we develop the first slicing
technique for probabilistic programs supporting both non-termination insensitive
and sensitive slices. Like [2], our development builds on classical notions of
slicing, which are adapted and generalized from the deterministic case to the
probabilistic case.

Our main contributions include:

A novel taxonomy of slicing for probabilistic programs. We formally de-
fine the notions of non-termination sensitive and insensitive slicing for prob-
abilistic programs (Section 5); this characterization naturally generalizes
the counterpart notion for deterministic programs. We further divide non-
termination insensitive slicing into two sub-categories: distribution sensitive
and distribution insensitive, which differ on whether the sliced program is re-
quired to preserve the relative outcome probabilities of the original program

or not. The cornerstone of this characterization (and all our development)
is a refined operational semantics of programs that distinguishes between
observation violation and non-termination (Section 4).

Syntactic conditions for generating different slice classes. We identify a
new form of dependence, dubbed observe(-nontermination) dependency,
that uniformly captures the indirect —more subtle— dependencies induced
by observe statements and/or non-terminating loops in probabilistic pro-
grams (Section 6). Through a bisimulation argument, we show that properly
combining traditional data and control dependencies with this novel form
of dependency yields correct program slices, for our entire slicing taxonomy
(Section 7).

An algorithm for computing slices. Todo: Abu, I will need your help here.Remark:

What is the novelty of this algorithm? It is only the computation of the observe(-

nontermination) dependency or is there something else? How does it compare to

previous algorithms? Do we prove it correct?

Todo: Once we have the final paper structure, we have to add a “Paper organi-

zation” paragraph.

2 Overview

We next overview the main novel features of our slicing technique, while elabo-
rating on the limitations of previous approaches they address.

2.1 Refined Program Semantics

Program P0 :

1: x :≈ unif[1, 4];
2: y :≈ unif[1, 4];
3: observe (y = 4);
4: return x

Program P1 :

1: x :≈ unif[1, 4];
2: y :≈ unif[1, 4];
3: while (y 6= 4) do skip;
4: return x

Program P ?1 :

1: x :≈ unif[1, 4];
2: skip;
3: skip;
4: return x

Fig. 1: Semantics conflating non-termination with failure to establish observe state-
ments: Under the semantics in [10, 2], programs P0 and P1 are semantically equivalent,
and P ?1 is a valid (non-termination insensitive) slice of both.

To start with, let us consider the programs P0 and P1 in Fig. 1. Program P0

samples two independent random integer values in the interval [1, 4] and returns
the first sample, observing that the second sample happens to be 4. This obser-
vation is denoted by the statement observe (y = 4) in line 3. Program P1, on
the other hand, enters a diverging loop if the second sample does not happen
to be 4.

From an operational perspective, P0 admits 4 × 1 = 4 executions, charac-
terized by having y = 4 (since the remaining 4 × 3 = 12 executions, where
y 6= 4, are blocked) and each occurring with probability 1/4× 1/4 = 1/16. On the
other hand, P1 admits 4 × 4 = 16 executions: those 4 executions where y = 4
are terminating and occur also with probability 1/16, while those 12 executions
where y 6= 4 are diverging, and therefore do not yield any (observable) program
outcome.

Existing slicing approaches [10, 2] adopt a program semantics that consists
in the “normalized distribution of outputs over terminating runs” that pass
observe statements. Under these semantics, the probability that P0 returns any
specific value, say 2, is calculated by dividing the probability 1× 1× 1/16 of all
valid and terminating executions3 where x = 2 by the probability 4 × 1 × 1/16
of all valid and terminating executions, yielding a result of 1/4. The probability
that P1 returns 2 is determined by following the same procedure (noting that
all executions induced by P1 are valid, but only a subset are terminating),
which yields, indeed, identical numbers. This remains true for any given return
value and therefore, the semantics in [10, 2] do not distinguish program P0 from
program P1. More generally, these semantics regard programs observe b and
while ¬b do skip as semantically equivalent, conflating thus failure to establish
an observe statement with non-termination.

As argued by Bischsel et al. [4], we believe that failure to establish an ob-
servation and non-termination represent conceptually different phenomena, and
this distinction should be reflected by the semantics adopted for slicing.

Even more critical is the fact that the aforementioned semantics do not con-
servatively extend that of a probabilistic language without conditioning, where
no normalization is applied. For example, any stantard sematics [3] would re-
port that the probability that P1 outputs, say 2, is simply 1× 1× 1/16, without
rescaling it by any normalization factor.

To address both issues above, we adopt a semantics akin to that of Olmedo
et al. [17], where we normalize w.r.t. the probability of all valid executions —not
only terminating ones. This semantic distinguishes program P0 from program
P1. For instance, it reports that program P0 returns 2 with probability 1/4 (and
terminates with probability 1), while program P1 returns 2 with probability 1/16
(and terminates with probability 1/4).

As a final remark for incoming examples, observe that when determining the
output distribution of observe-free programs, we can dispense of any normaliza-
tion factors since they will always be 1.

2.2 Support for Non-termination Sensitive Slicing

As a direct consequence of the semantics they adopt, [10, 2] present a slicing ap-
proach that is insensitive to non-termination. Program slicing typically comes
in two flavors: non-termination sensitive and insensitive, differing on how non-
terminating executions of the original program are treated in the sliced pro-

3 By valid execution, we mean executions that pass all observe statements.

Program P2 :

1: x :≈ unif[1, 4];
2: y :≈ unif[1, 4];
3: while (x = 4) do skip;
4: return x

Program P •2 :

1: x :≈ unif[1, 4];
2: skip;
3: while (x = 4) do skip;
4: return x

Program P ?2 :

1: x :≈ unif[1, 4];
2: skip;
3: skip;
4: return x

Fig. 2: Non-termination sensitive and insensitive slicing: Programs P2 (original pro-
gram), P •2 (non-termination sensitive slice) and P ?2 (non-termination insensitive slice).

gram (both variants treat terminating executions uniformly, strictly requiring
their preservation). Loosely speaking, a non-termination sensitive slicing must
preserve all non-terminating executions of the original program in the sliced
program. On the other hand, a non-termination insensitive slicing allows non-
terminating executions of the original program to become terminating in the
sliced program (and therefore the “termination domain” of the sliced program
can be larger than that of the original program).

For example, given the program P1 in Fig. 1, the slicing approaches in [10,
2] allow removing the while-loop together with the random assignment to y,
yielding the sliced program P ?1 . However, while program P1 terminates with a

Todo: Confirm this for [10]

probability of only 4 × 1 × 1/16 = 1/4, program P ?1 terminates with probability
1 > 1/4. In contrast to [10, 2], a non-termination sensitive slicing of P1 would
not allow removing the while-loop.

As exhibited in this example, non-termination insensitive slicing can be more
agressive, leading to smaller sliced programs, which, for some applications such
as program understanding and debugging, can be more desirable than having
—larger— sliced programs that do preserve non-termination.

However, there exist applications of probabilistic programming such as cryp-
tography and differential privacy, which regard non-termination as an observable
phenomena (by the so-called attacker) and preserving non-termination in these
domains becomes of paramount importance.

Notably, our slicing approach supports —and distinguishes between— both
forms for of slicing. Like for deterministic programs, the key ingredient to es-
tablish this distinction is the variant of control dependence among variables
considered: so-called weak control dependence will lead to a slicing that is non-
termination insensitive, and strong control dependence to a slicing that is non-
termination sensitive.

2.3 Natural Notion of Non-termination Insensitive Slicing

Remark: @Abu, we need a ref-
erence here. Can we use the
same as in the intro?

Weiser’s original notion of non-termination insensitive slicing for deterministic
programs requires that whenever the original program halts its execution on a
given input, the sliced program also halt on that input, traversing the same exe-
cution path with equivalent values for relevant variables. Our counterpart notion
for probabilistic programs is inspired by this, generalizing it in a quantitative
manner to account for execution probabilities.

To ilustrate this, let us consider program P2 from Fig. 2, and program P ?2
which is obtained from P2 by slicing away the while-loop in line 3, together with
the random assignment to y in line 2. Observe that P2 admits 3 × 4 = 12 ter-
minating executions, which can be partitioned into three groups of 4 executions
each, according to the value of variable x, e.g., the first group gathers the 4
executions where x = 1, and likewise for the second (x = 2) and third (x = 3)
group; each group has an overall probability of 4× 1/16 = 1/4.

Each of these groups of terminating executions in P2 is “mirrored by” a
terminating execution in P ?2 , with equivalent value for x and occurring with
the same probability (1/4). Therefore, we regard P ?2 as a valid non-termination
insensitive slice of P2. Furthermore, note that the non-terminating executions of
P2 (i.e. those where x = 4) “become” terminating in P ?2 , matching the intuition
behind non-termination insensitive slicing that we provide in Section 2.2.

While our notion of non-termination insensitive slice for probabilistic pro-
grams arguably captures Weiser’s original intuition, previous approaches [10, 2]
consider a very restricted form of non-termination insensitive slicing, which, for
example, rules out P ?2 as a valid slice of P2. This is because their normalized
output distribution do not fully agree (intuitively, because P2 outputs 4 with
a null probability and P ?2 does it with a strictly positive probability). Interest-
ingly, the only proper slice of P2 that they deem valid is P •2 , where only the
random assignment to y is removed.

3 Preliminaries

In this section, we present the notions related to probability distributions, bring
the concept of CFG, and various program dependence relations that we use for
our subsequent development.

3.1 Probability related notions

Notion of subdistribution. Given a denumerable set A, a (necessarily discrete)
probability subdistribution over A is a function

µ : A→ [0, 1] such that
∑
a∈A

µ(a) ≤ 1 .

The probability of an event A0 ⊆ A, by abuse of notation also written µ(A0), is
defined as µ(A0) =

∑
a∈A0

µ(a). We use w(µ) to denote the weight
∑
a∈A µ(a)

of µ and support(µ) to denote the its support {a ∈ A | µ(a) > 0}. Furthermore,
we use D≤1(A) to denote the set of subdistributions over A and D=1(A) to
denote the subset of subdistributions of weight 1.

Finally, we write 0 for the null subdistribution that assigns probability 0 to
all elements of its carrier set.

Operations. Given µ1, µ2 ∈ D≤1(A), we define the (partial) sum µ1 + µ2 ∈
D≤1(A) as

(µ1 + µ2)(a) = µ1(a) + µ2(a) provided w(µ1) + w(µ2) ≤ 1

Similarly, given a scaling factor c ∈ R≥0 and a subdistribution µ ∈ D≤1(A) such
that c · w(µ) ≤ 1, we write c · µ for the subdistribution (in D≤1(A) defined as
(c · µ)(a) = c · µ(a). Furthermore, given a distribution µ ∈ D≤1(A×B) over
a product space, we use π1(µ) (resp. π2(µ)) to denote its first (resp. second)
marginal, i.e. the distribution in D≤1(A) (resp. D≤1(B)) defined as π1(µ)(a) =∑
b∈B µ(a, b) (resp. π2(µ)(b) =

∑
a∈A µ(a, b)).

Finally, given µ ∈ D≤1(A) and A0 ⊆ A we define µ|A0
∈ D≤1(A), the

restriction of µ w.r.t. A0 by:

µ|A0
=

{
µ(a) if a ∈ A0

0 otherwise

Note that we always have µ = µ|A0
+ µ|A\A0

.

Relation lifting. There exists a canonical approach for lifting relations over
a pair of sets to relations over distributions over such sets, in terms of so-
called couplings. More concretely, given relation R ⊆ A × B, relation R↑ ⊆
D≤1(A)×D≤1(B), the lifting of R to D≤1(A)×D≤1(B), is defined as

µ1R
↑ µ2 = ∃µ ∈ D≤1(A×B).

{
π1(µ) = µ1 ∧ π2(µ) = µ2

support(µ) ⊆ R

Formally, a distribution µ ∈ D≤1(A×B) where π1(µ) = µ1 and π2(µ) = µ2 is
known as a coupling between µ1 and µ2. If the support of such a coupling lies
within relation R, then it is a witness of the relation µ1R

↑ µ2. In this case, we
write µ |= µ1R

↑ µ2.

Todo: Complete
Order structure.

3.2 Program dependences

Todo: bring the definition of
CFG hereWe consider the CFG representation of probabilistic programs as defined in

Def. 5. The set of successors and predecessors of any CFG node n is denoted
by succ(n) and pred(n). The notations def (n) and ref (n) denote the sets of
program variables that are defined and referenced respectively at n. A finite
CFG path n1, n2, . . . , nk (or [n1..nk] for short) is a sequence of CFG nodes such
that ni+1 ∈ succ(ni) for all 1 ≤ i ≤ k− 1 and k ≥ 1. An infinite path n1, n2, . . .
is denoted by [n1..]. A path is non-trivial if it contains at least two nodes.
A final node is either a non-predicate node with out-degree 0 or a predicate
node having a missing successor. A path is called maximal or complete if it is
either an infinite path or a finite path that ends at a final node. Sometimes,

we use the notation π − {m,n} to denote the set of CFG nodes in the CFG
path π excluding m and n. Data and control dependences are two fundamental
relations used in computing dependence-based slicing. They are defined over the
CFG representation of programs.

Definition 1 (Data Dependency [22]). Node n is data dependent on node

m (written m
dd→ n) in the CFG G if there is a program variable v such that:

(1) there exists a nontrivial path π in G from m to n such that for every node
m′ ∈ π − {m,n}, v 6∈ def (m′), and (2) v ∈ def (m) ∩ ref (n).

Intuitively, m
dd→ n denotes that n uses the value of a program variable that is

set at m.
The first formal definition of standard control dependence relation is pro-

vided by Ferrante et al.[7] based on the postdominator [21] relation. Node n is
said to postdominate node m if and only if every path from m to the exit node
ne goes through n. Note that this definition assumes that G has a single exit
node ne. n strictly postdominates m if n postdominates m and n 6= m. The
standard control dependency relation can be defined as follows:

Definition 2 (Control Dependency [7, 22]). Node n is control dependent

on node m (written m
pcd−−→ n) in the CFG G if (1) there exists a nontrivial path

π in G from m to n such that every node m′ ∈ π − {m,n} is postdominated by
n, and (2) m is not strictly postdominated by n.

The relation m
pcd−−→ n indicates that there must be two branches originating

from m, where n is consistently executed in one branch but may not be executed
in the other. Several control dependency relations [18, 19, 22, 20] have been pro-
posed to extend the standard relation, addressing various scenarios in program
control flow such as CFGs with infinite loops, no end node, or multiple end
nodes. Danicic et al. [5] introduced two generalizations of control dependence,
termed weak and strong control closure, which account for non-termination in-
sensitivity and nontermination sensitivity respectively. Many existing control
dependencies can be seen as specific instances of these generalizations. In the
following, we provide the definition of weak and strong control closure by sum-
marizing the concepts from Danicic et al.

Definition 3 (Weak Control Closure). Let N ′ be a subset of nodes in the
CFG G = (N,E). N ′ is weakly control closed iff for all n 6∈ N ′:

1. n is reachable from N ′, and
2. all CFG paths n1 = n, . . . , nk from n meet at nk ∈ N ′ such that ni 6∈ N ′ for

1 < i < k.

While computing a subset of CFG nodes N ′ as the slice, if N ′ is not weakly
control closed, there exists a CFG node n 6∈ N ′ having at least two distinct
CFG paths without going through a node in N ′ and meeting at distinct nodes
m1,m2 ∈ N ′ such that m1 6= m2. This implies that n is a predicate node, and

based on the outcome of the condition at n during an execution, either m1 or m2

will be executed first. Consequently, we say that the weak control dependence

relation n
wcd−−→ mi holds for i = 1, 2. Weak control dependence relation does not

take into account the effect of nontermination. Next, we define strong control
closure that will lead to the definition of the strong control dependence relation
scd−−→:

Definition 4 (Strong Control Closure). Let N ′ be a subset of nodes in the
CFG G = (N,E). N ′ is strongly control closed if, for every node n 6∈ N ′:
1. n is reachable from N ′, and either (2) or (3) below are satisfied:
2. all CFG paths n1 = n, . . . , nk from n meet at the same node nk ∈ N ′ such

that ni 6∈ N ′ for 1 < i < k, and all complete paths from n contain at least
one node from N ′,

3. no node in N ′ is reachable in G from n.

In simpler terms, this definition essentially demands that the conditions for
weak control closure are met. Consequently, if the control dependence relation

n
wcd−−→ mi holds, then the strong control dependence relation n

scd−−→ mi also
holds. Additionally, if there exists a predicate node n with two branches: one
leading to a CFG path n1 = n, . . . , nk that meets at nk ∈ N ′ without passing
through any node in N ′, and the other branch leading to an infinite path rep-
resenting nonterminating execution without passing through any node m ∈ N ′,
then the relation n

scd−−→ m holds. In the rest of the paper, we use the symbol
cd→

to denote any control dependency relation.

4 Programming Model

4.1 Syntax

To describe probabilistic programs we adopt a simple imperative language ex-
tended with random assignments and observe statements, dubbed pWhile. A
program p is a command, followed by a return expression. A command is ei-
ther a no-op (skip), a deterministic assignment (x := a), a random assignment
(x :≈ d), a sequential composition (c1; c2) of two other commands, a conditional
branching (if b then c1 else c2), a guarded loop (while b do c) or an observation
(observe b). Formally, it is given by grammar:

p ::= c return a Program

c ::= skip | x := a | x :≈ d | c1; c2 | Commands
if b then c1 else c2 | while b do c | observe b

a ::= z | x | −a | a1 + a2 | a1 × a2 | . . . Arithmetic expressions

b ::= true | false | a1 == a2 | a1 ≤ a2 | . . . | Boolean expressions
¬b | b1 ∧ b2 | b1 ∨ b2 | . . .

d ::= distr{z1 7→ p1, . . . , zn 7→ pn} | Distribution expressions
unif[z1, z2] | binom(n, p) | geom(p) | . . .

Program variables and arithmetic expressions are assumed to be integer-valued.
Arithmetic and Boolean expressions are rather standard. Distribution expres-
sions represent probability distributions over the set of integers; for concreteness,
we include distribution probabilities defined pointwise (distr{z1 7→ p1, . . . , zn 7→ pn}),
uniform distributions over an integer interval (unif[z1, z2]), binomial distribu-
tions (binom(n, p)) and geometric distributions (geom(p)) but, in practice, dis-
tribution expressions need not be restricted to these kind of distributions.

As for commands, the class of distinguished statements are probabilistic as-
signments and observe statements. A probabilistic assignment x :≈ d samples
a value from distribution d and assigns it to program variable x . An observe
statement observe b is just syntactic sugar for while ¬b do skip. Said otherwise,
it “block” executions violating b by assigning them a null probability.

Todo: Add discussion saying
we follow . . . , and that observe
statements do not renormal-
ize.

We use V to denote the finite set of program variables (ranged over by x), c to
denote the set of programs (ranged over by c), AE to denote de set of arithmetic
expressions (ranged over by a), BE to denote de set of Boolean expressions
(ranged over by b) and DE to denote de set of distribution expressions (ranged
over by d).

Example 1 (Geometric distribution).

m := 0;
b := 0;
while (b == 0)

b :≈ unif[0, 1];
m := m+ 1

return m

4.2 Control flow graphs

To bridge the semantics of “original” programs and their sliced versions, we
instrument program semantics to keep track the nodes of the control flow graph
(CFG) of programs that their executions traverse. We thus continue by recalling
the notion of control flow graph.

Definition 5 (Control flow graph). A CFG is a directed graph G = (N , E , start),
where

1. N is the set of nodes that represent atomic commands in the program and is
partitioned into two subsets, i.e. N = N S]NP , where N S contains state-
ment nodes (from no–ops, assignments, and observe statements) which have
at most one succesor node and NP contains predicate nodes (from con-
ditional branching and guarded loops) which have (exactly) two successors.
Moreover, we use NE to denote the subset of nodes from N S with no succes-
sor. These are exit (or end) nodes of G representing succesfull termination
of a program trace.

2. Likewise, start ∈ N is a distinguished node representing the starting point
of program execution (the entry point of the CFG).

3. E ⊆ N × N is the set of edges representing the possible flow of execution
in the program. Exit nodes in NE have no succesor, statement nodes in
N S \ NE have one succesor, given by function succ(·) and predicate nodes
in NP have two successors, given by functions succT(·) and succF(·), and
respectively referred to as the true and false successor node.

The translation of a pWhile command into a CFG is rather standard and
we refer the reader, e.g., to [16] for a detailed account thereof. Note that if
the pWhile command to translate ends with a guarded loop, then the node
representing the guard will have no false succesor, violating the requirements in
Definition 5. To accommodate these cases, we can add a spurious skip statement
right after the loop.

Example 2 (Geometric distribution). Below we depict the CGF of the command
in Example 1 (later on we account for the effect of the return statement):

EXAMPLE no n
I

am O
ne 6

6 0 d
while 16 0 n

y
bist Lott itt ft
Mn ATI MY bi 64 ly

Ifoe

Mo

no mo bolt l

I
no o bolt d

b
Nz 10,07 1

F
Ms null Justibufon

ft
no 0,0160

t
t t t t r

To recover the statements (no-ops, assignments or Boolean expressions) as-
sociated to the nodes of a CFG, we assume the presence of function code. Con-
cretely, codeG(n) returns the statement associated to node n by CFG G. When
the underlying CFG G is understood from the context, we omit it and simply
write code(n).

4.3 Semantics

As usual, a store σ is a mapping from variables to integer numbers; we use
Σ = V → Z to denote the set of stores. Given a store σ ∈ Σ and a variable
x ∈ V, we write σ[x 7→ z] for the store that is obtained from σ, by updating
the value of x to z. To give semantics to programs, we assume the presence of
interpretation functions

J·K : AE → Σ → Z, J·K : BE → Σ → B and J·K : DE → Σ → D=1(Z) ,

n ∈ NS \ NE code(n) = skip

〈n, µ, p〉 −→ 〈succ(n), µ, p〉 [Skip]

n ∈ NS \ NE code(n) = x := a

µ′(σ′) = µ({σ ∈ Σ | σ[x 7→ JaKσ] = σ′})
〈n, µ, p〉 −→ 〈succ(n), µ′, p〉

[Assign]

n ∈ NS \ NE code(n) = x :≈ d
Assuming V = {x , x1, . . . , xn},

µ′(x 7→ z, x1 7→ z1, . . . , xn 7→ zn) =
∑
σ∈Σ|

∧n
i=1 σ(xi)=zi

µ(σ)× (JdKσ z)

〈n, µ, p〉 −→ 〈succ(n), µ′, p〉
[Random]

n ∈ NS \ NE code(n) = observe b
µT = µ|{σ∈Σ|JbKσ=true} µF = µ|{σ∈Σ|JbKσ=false}

〈n, µ, p〉 −→ 〈succ(n), µT , p+ w(µF)〉 [Observe]

n ∈ NP code(n) = b
µT = µ|{σ∈Σ|JbKσ=true}

〈n, µ, p〉 −→ 〈succT(n), µT , p〉
[Cond-T]

n ∈ NP code(n) = b
µF = µ|{σ∈Σ|JbKσ=false}

〈n, µ, p〉 −→ 〈succF(n), µF , p〉
[Cond-F]

Fig. 3: Small-step semantics over CFGs.

that given an arithmetic/Boolean/distribution expression and a store returns an
integer/a Boolean/a proper distribution over the set of integers. Their definitions
are rather standard and are thus omitted.

To define the semantics of programs we follow [2] and assume that nodes
of their associated CFGs modify probability distributions of over stores, rather
than individual stores. Thus, in the reminder we refer to elements of D≤1(Σ)
as probabilistic states (which are ranged over by µ).

Let c be a pWhile program of CFG G = (N , E). A configuration of c is a
triple 〈n, µ, p〉, where n ∈ N is a node of G, µ ∈ D≤1(Σ) is a probabilistic state
and p ∈ [0, 1] is a probability. We introduce a small-step semantics −→ that
relates configurations. Loosely speaking,

〈n, µ, p〉 −→ 〈n′, µ′, p′〉

holds if, when executing command in node n from a probabilistic state µ and a
cumulated probability p of violating observe statements, in one step we transition
to (succesor) node n′ resulting a in a probabilistic state µ′ and a cumulated
probability p′ of violating observe statements. Note that as the execution of
a program progress, the probability of violating observe statements can only
remain equal or increase, we will always have p′ ≥ p. The formal definition of
relation −→ is provided in Figure 3.

Example 3. The small-step semantics for the CFG from Example 2 is found in
Figure 5.

〈n, µ, p〉 −→0 〈〈0, p〉〉

〈n, µ, p〉 −→k 〈〈µ, p〉〉
provided k ≥ 1 and n ∈ NE

〈n, µ, p〉 −→ 〈succ(n), µ′, p′〉
〈succ(n), µ′, p′〉 −→k 〈〈µ′′, p′′〉〉
〈n, µ, p〉 −→k+1 〈〈µ′′, p′′〉〉

provided k ≥ 1 and n ∈ NS \ NE

〈n, µ, p〉 −→ 〈succT(n), µT , pT 〉
〈succT(n), µT , pT 〉 −→k 〈〈µ′T , p′T 〉〉
〈n, µ, p〉 −→ 〈succF(n), µF , pF 〉
〈succF(n), µF , pF 〉 −→k 〈〈µ′F , p′F 〉〉
〈n, µ, p〉 −→k+1 〈〈µ′T + µ′F , p

′
T + p′F 〉〉

provided k ≥ 1 and n ∈ NP

Fig. 4: Step-indexed semantics over CFGs.

Even though relation −→ fully describes programs behaviour, one is usu-
ally particularly interested in describing the distribution of final stores or final
probabilistic state reached by a program. Informally, we can construct this final
probabilistic state by adding up all probabilistic states reached within exit nodes
(the ones highlighted in blue in Figure 5) and normalizing it by the probabil-
ity of all valid executions. Formally, we need to define a step-indexed relation
−→k, which collects the final stores reached within k steps together with their
respective probabilities (the larger the k, the more final states it collects and
the larger the probabilities can grow); see Figure 4.

Example 4. Continuing with our running example, for any initial probabilistic
state µ0 and any probability p, we shall have:

– 〈n1, µ0, p〉 −→k 〈〈0, p〉〉 for all k = 0, . . . , 6

– 〈n1, µ0, p〉 −→k 〈〈{(1, 1) 7→ 1/2}, p〉〉 for all k = 7, . . . , 9

– 〈n1, µ0, p〉 −→k 〈〈{(1, 1) 7→ 1/2, (2, 1) 7→ 1/4}, p〉〉 for all k = 10, . . . , 12

– 〈n1, µ0, p〉 −→k 〈〈{(1, 1) 7→ 1/2, (2, 1) 7→ 1/4, (3, 1) 7→ 1/8}, p〉〉 for all k =
13, . . . , 15

The formal definition of the step-indexed relation −→k is provided in Fig-
ure 4. As one can already notice in Example 4, relation −→k fulfills two impor-
tant properties:

Determinism: For any configuration 〈n, µ, p〉 and any number of steps k, there
exists a single µ′ and single p′ such that 〈n, µ, p〉 −→k 〈〈µ′, p′〉〉.

ω-chain: For any configuration 〈n, µ, p〉, the sequence 〈〈〈µk, pk〉〉 | 〈n, µ, p〉 −→k

〈〈µk, pk〉〉〉k∈N forms an ω-chain, where pairs 〈〈µk, pk〉〉 are ordered componen-
twise, i.e. 〈〈µ, p〉〉 ≤ 〈〈µ′, p′〉〉 iff µ ≤ µ′ and p ≤ p′.

The last property allows formally defining the final probabilistic state reached
by a program of CFG G, when executed from initial probabilistic state µ0. It is
given by JGK〈〈µ0, 0〉〉, where

JGK〈〈µ0, p〉〉 =
µ′

1− p′
and 〈〈µ′, p′〉〉 = sup

k∈N
〈〈〈µk, pk〉〉 | 〈n, µ, p〉 −→k 〈〈µk, pk〉〉〉

Note that if G violates observe statements with probability 1, i.e. p′ = 1, then
its semantics is undefined.

5 Slicing Taxonomy

Our contributions include novel characterizations of (and algorithmic support
for) non-termination sensitive and insensitive slicing for probabilistic programs.
We further divide non-termination insensitive slicing into two sub-categories:
distribution sensitive and distribution insensitive. Let us present the main intu-
ition behind these semantic notions.

Non-termination sensitive slicing. A non-termination sensitive slicing will pre-
serve the probability of any possible (proper) program outcomes as well as the
probability of non-termination. More formally, if P ′ is a subprogram of P (i.e.

Remark: Maybe use another
terminology, e.g. portion P ′ is obtained from P by replacing some of its statements by skip), we say that

P ′ is a valid non-termination sensitive slice of P iff

DP = DP ′ and PP (E) = PP ′(E) , (1)

where DP and PP (E) respectively denote P ’s outcomes probability distribu-
tion and P ’s probability of non-termination, and likewise for P ′. We note that
equation PP (E) = PP ′(E) in fact follows from equation DP = DP ′ since the
probability of non-termination PP (E) of any program P can be computed as
one minus the probability of termination, i.e. one minus the total probability
mass of DP .

To illustrate this class of slicing, let us consider program P2 from Fig. 2. The
probability of returning a proper value and of divergence, denoted by E, are as
follows:

P2(x = 1) = 1/4
P2(x = 2) = 1/4
P2(x = 3) = 1/4
P2(x = 4) = 0
P2(x =) = 0

and P2(E) = 1/4 ,

where symbol “ ” stands for “otherwise”, i.e., any other value not present in the
preceding enumeration.

The only proper slice of P2 that is non-termination sensitive is P •2 , whose
output distribution obeys the very same equations as above.

Non-termination insensitive slicing. In a non-terminating insensitive slicing, the
sliced program will preserve or increase the probability of returning any given
outcome, in comparison with the original program. Intuitively, this is because
some non-terminating execution in the original program may become terminat-
ing in the sliced program, and therefor, we are trading some non-termination
probability in the original program for some normal termination in the sliced
program. As a result, the sliced program may feature a smaller probability of
non-termination. More formally, if P ′ is a subprogram of P , we say that P ′ is a
valid non-termination insensitive slice of P iff

DP ≤ DP ′ and PP (E) ≥ PP ′(E) . (2)

Here, DP ≤ DP ′ (like DP = DP ′ in Equation 1) should be understood point-
wise, i.e. DP (v) ≤ DP ′(v) for all v. By the same argument as before, note that
equation PP (E) ≥ PP ′(E) also follows from DP ≤ DP ′ .

To ilustrate this class of slicing, let us consider the output distribution of
P ?2 , and compare it to that of P2:

P ?2 (x = 1) = 1/4 ≥ 1/4
P ?2 (x = 2) = 1/4 ≥ 1/4
P ?2 (x = 3) = 1/4 ≥ 1/4
P ?2 (x = 4) = 1/4 ≥ 0
P ?2 (x =) = 0 ≥ 0

and P ?2 (E) = 0 ≤ 1/4

From the above equations, we conclude that P ?2 is a non-termination insensitive
slice of P2.

In Figure 1 we can find another example of this kind of slicing: Program P ?1
is a non-termination insensitive slice of P1:

P ?1 (x = 1) = 1/4 ≥ 1/4× 1/4 = P1(x = 1)
P ?1 (x = 2) = 1/4 ≥ 1/4× 1/4 = P1(x = 2)
P ?1 (x = 3) = 1/4 ≥ 1/4× 1/4 = P1(x = 3)
P ?1 (x = 4) = 1/4 ≥ 1/4× 1/4 = P1(x = 4)
P ?1 (x =) = 0 ≥ 0× 1/4 = P1(x =)

and

P ?1 (E) = 0 ≤ 1/4 = P1(E)

In particular it is a distribution sensitive slice because it preserves the relative
probabilities of the original program, or said otherwise, the output distribution
of P ?1 is a scaled version of that of P1. For this subclass of non-termination
insensitive slicing, Equation 2 is refined to

∃q ∈ [0, 1]. DP = q · DP ′ and PP (E) ≥ PP ′(E) (3)

Intuitively, the above equation holds when the removed program fragment is
“probabilistically independent” of the rest of the program, and the scaling factor
q — 1

4 in the above example— coincides with the termination probability of the

program fragment being removed. This kind of slicing corresponds, indeed, to
the one supported by Amtoft and Banerjee [2].

When the sliced program does not necessarily respect the relative proba-
bilities of the original program, but does comply with Equation 2, we call it a
distribution insensitive slice. This is the case, e.g., for P ?2 , and P2.

6 Slicing Definition

In the context of probabilistic programs (PPs), slicing typically entails identi-
fying segments of code that influence the evaluation of the return expression,
particularly, the values of variables involved in this expression. The objective is
to compute a slice that preserves only the portions relevant to the return ex-
pression, while maintaining the original program’s relative distribution of return
values as discussed in Sec. ??. The slicing process is guided by a slicing criterion
C ⊆ N . In the context of PP, C is typically a singleton set containing the CFG
node representing the return statement. Although C could potentially encom-
pass additional CFG nodes without any inherent limitation, we maintain this
restriction for the sake of brevity. Dependence-based slicing algorithms typically
operate at the CFG level and compute a slice set sliceC as described below:

sliceC(G,
cd→) =

⋃
n∈C
{m : m(

cd→ ∪ dd→)∗n} (4)

where,
cd→ is a suitable control dependence relation,

dd→ is a data dependence
relation, and →∗ is the transitive reflexive closure of →. This definition can
precisely captures the slice of a deterministic program.The sliceC function above

is parametric to a control dependence relation
cd→ which decides whether the

slice is nontermination insensitive or sensitive. A strong (resp. weak) control
dependence relation produces nontermination sensitive (resp. insensitive) slices.

However, the above equation is not sufficient and in some cases not correct in
producing a correct slice of a probabilistic program. The observe statements and
the nonterminating loops may affect the final distribution of a PP by introducing
an special kind of dependency called observe-nontermination dependence 4 that
cannot be captured by data and control dependencies only. In the next section,
we illustrate this dependence through examples and provide its formal definition.

6.1 Observe-Nontermination dependence

Both an observe statement and a potentially nonterminating loop determine
whether the execution should proceed beyond these instructions. An execution
is either discarded if an observation failure occurs or remains stuck indefinitely
if the loop does not terminate. Consequently, these two kinds of program in-
structions, which we collectively call observe-nontermination instruction, may

4 may be we should come up with a better name like distribution-aware dependence
or something else

impact the final distribution of a PP program. An observe-nontermination de-
pendence is a conditional dependence between two CFG nodes n0 and nr such
that no represents an observe-nontermination instruction, nr is a CFG nodes in
the slicing criterion C, and there exists a CFG node n that affects the execu-
tion of both no and nr due to data and/or control dependencies. The following
definition provides the formal treatment of observe-nontermination dependence:

Definition 6 (Observe-Nontermination dependence). Let G = (N,E, n0)
be any CFG, let no ∈ N be an observe-nontermination instruction, and let
nr ∈ C be any CFG node in the slicing criterion. An observe-Nontermination

dependence relation no
obsntd−−−−→ nr holds iff there exists a CFG node n ∈ N such

that the reflexive transitive closure relations n(
cd→ ∪ dd→)∗no and n(

cd→ ∪ dd→)∗nr
hold.

Thus, the relation no
obsntd−−−−→ nr represents a conditional dependence IFO: What

do you mean by “conditional”? How is it different from simply “dependence”? J between
no and nr (i.e. no and nr are not probabilisitcally independent) when a third
CFG node n exists that affect the execution of both no and nr. If the CFG node
no in the above definition represents only the observe statement, then we call

the dependence relation an observe dependence no
obsd−−−→ nr.

We demonstrate the above dependence relation with examples. Consider
programs P0, P1 (Fig. 1) and P3 (Fig. 2). Let ni represents the CFG node
of statement i in the given program. For programs P0 and P1, the relation

n3
obsntd−−−−→ n4 does not hold, as there is no CFG node nj for any 1 ≤ j ≤ 3 such

that nj(
cd→ ∪ dd→)∗n3 and nj(

cd→ ∪ dd→)∗n4 hold. This is evident since variables
x and y are independent in these programs. Consequently, we can slice out n3
from a nontermination insensitive slice of P0 and P1 without affecting the final
distribution modulo termination. This implication can be verified by proving
that the outcome of any execution of n3 and n4 are probabilistically independent
modulo termination IFO: What does “modulo termination” mean here? Probabilistic

independence is unrelated to termination J .

Program P0 has 4×4 = 16 distinct executions in which 4×1 = 4 executions
are valid executions. The distribution of the return values of P0 is represented
by

Remark: All calculations below
are already present in Sec-
tion 5. I wouldn’t repeat them.DP0 = {i 7→ 1

4
, j 7→ 0}

where i, j ∈ Z, 1 ≤ i ≤ 4, j 6= i. We calculate the probability

P(x = i) =
1× 2× 1/16

8× 1/16
=

1

4
.

If we replace statement 3 with a skip statement, the probability will be altered
to

P ′(x = i) =
1× 4× 1/16

16× 1/16
=

1

4

which is equal to P(x = i). In case of program P1, which is nonterminating
when y < 4, we calculate the probability

P(x = i) =
1× 1× 1/16

16× 1/16
=

1

16
.

The termination probability of this program is P(λ) = 4×1
16 = 1

4 . If the nonter-
minating loop is replaced by a skip statement, its probability for any value x = i
will be

P ′(x = i) =
1× 4× 1/16

16× 1/16
=

1

4
,

and the following equality holds:

P(x = i) = P ′(x = i)× P(λ).

In the case of program P3, the relation n3
obsntd−−−−→ n4 holds due to the rela-

tions n1
dd→ n3 and n1

dd→ n4. This implies that the outcome of any execution of
n3 and n4 are not probabilistically independent. The probabilities of possible
outcomes are calculated as follows:

P(x = i) =
1× 4× 1/16

16× 1/16
=

1

4

for 1 ≤ i ≤ 3 and P(x ≥ 4) = 0 since P3 does not terminate if x = 4 and the
outcomes of it is in the range 1 ≤ i ≤ 3. If we replace the nonterminating loop
by a skip statement, we obtain the probabilities

P(x = i) =
1× 4× 1/16

16× 1/16
=

1

4

for i = 1, . . . , 4. Consequently, we cannot prove the equality of the distribu-
tions (modulo termination) D = {0 7→ 1

4 , . . . , 3 7→
1
4 , ∗ 7→ 0} and D′ = {0 7→

1
4 , . . . , 4 7→

1
4 , ∗ 7→ 0}. Therefore, a nontermination insensitive distribution sensi-

tive slice of P3 must include the nonterminating loop at statement 3. However, a
nontermination insensitive distribution insensitive slice of P3 may still slice away
this nonterminating loop since if we assume that the nonterminating loop even-
tually terminates, then its distribution will be D′′ = {0 7→ 1

4 , . . . , 4 7→
1
4 , ∗ 7→ 0}

which is equal to D′
Todo: Maybe it is a good idea to discuss also the first program in Section 10.1,

to illustrate the v-shape thing for observe statements.

6.2 Computing various slices

Eq. 5 presented below extends Eq. 4 to compute the slice set for various types
of slices of a given PP program:

Remark: Relation R should be
parametrized by cd.

sliceC(G,
cd→, R→) =

⋃
n∈C
{m : m(

cd→ ∪ dd→)∗n} ∪
⋃

no|∃nr∈C. no
R→nr

{n : n(
cd→ ∪ dd→)∗no}

(5)

Slicing class cd R

non-termination sensitive scd obsntd

non-termination insensitive,
distribution sensitive wcd obsntd

non-termination insensitive,
distribution insensitive wcd obsd

Table 1: Dependence relation used for defining each class of slicing.

The equation above is parameterized by the control dependency relation
cd→, which may manifest as either a weak or strong control dependency relation
wcd−−→ or

scd−−→ respectively. Additionally, it involves the relation
R→, which can

either signify the observe-nontermination dependency relation
obsntd−−−−→ or only

the observe dependency relation
obsd−−−→. To recover each class of slicing, relations

cd and R must be instantiated as summarized in Table 1.
For the nontermination and distribution insensitive slice, we disregard the

impact of nontermination entirely, as the semantics assume that all nonterminat-
ing loops eventually terminate in both the original program and the slice. Conse-

quently, this type of slice set is determined by the relation sliceC(G,
wcd−−→, obsd−−−→).

Conversely, for the nontermination insensitive distribution sensitive slice, we fo-
cus solely on nonterminating loops that influence the final distribution, disre-
garding those that are probabilistically independent of the return statement in

a semantic context. Hence, the relation sliceC(G,
wcd−−→, obsntd−−−−→) computes these

slices by encompassing the following semantics: (1) the relation
wcd−−→ disregards

all nontermination effects while calculating the data and control dependency in

Eq. 5, and (2) the relation
obsntd−−−−→ selectively include all nonterminating instruc-

tions that affect the final distribution at the CFG node nr. The nontermination

sensitive slice is computed by the relation sliceC(G,
scd−−→, obsntd−−−−→), which cap-

tures the effect of nontermination during the computation of the normal data
and control dependency relation as well as during capturing the effect of the
dependency due to observe-nontermination instruction.

Todo: For the sake of self-containedness, wcd, scd and dd should be defined (I

guess these defs are used in the soundness proof, too.)

7 Slicing Correctness

In this section, we develop theories and a proof framework for proving the cor-
rectness of the slice P2 of a probabilistic program P1. We formally express this
correctness criteria by introducing some mathematical notations.

Let Γ ∈ N × D≤1(Σ) be a program configuration expressing the fact that
the execution is at CFG node n having the probabilistic store µ ∈ D≤1(Σ) for

any Γ = (n, µ). We sometimes write node(Γ) = n and store(Γ) = µ for any
Γ = (n, µ). Let V ⊆ V be a subset of variables and let σ ∈ Σ. The restriction
of the store σ on V denoted σ|V is defined as σ|V = ∪x∈V {x 7→ σ(x)}. Let
ΣV : V → Z be a restriction of Σ such that σ|V ∈ ΣV is the restriction of σ ∈ Σ.
The projection of µ on V denoted µ|V is defined as µ|V (σV) =

∑
σ∈Σ

σV =σ|V
µ(σ)

In what follows, we assume that P1 is the original program and P2 is the
slice computed according to Def. 13 from the slice set SC which is computed
using any dependence-based slicing algorithm such as Alg. 3. We say that SC

is closed under the relations
dd−→,

cd−→, and
R−→ when it is computed according to

Eq. 5.

7.1 Correctness Theorems

Definition 7 (Equivalence of probabilistic stores). Let V ⊆ V be a subset
of variables, and let µ1, µ2 ∈ D≤1(Σ) be pairs of probabilistic stores. Let '
be any of the following relations over probability stores: (i) equality relation
(i.e. µ1 = µ2), (ii) equality upto a scaling factor q ∈ Q denoted µ1 =q µ2 if
µ1 = q × µ2), and (iii) less or equal upto a scaling factor q denoted µ1 ≤q µ2

if µ1 ≤ q × µ2. We say that µ1 and µ2 are equivalent modulo relation ' with
respect to V , written µ1 'V µ2, iff µ1|V ' µ2|V holds.

We now introduce the notion of next observable nodes which was originally
introduced within the realm of non-probabilistic programs. As we traverse the
CFG and encounter a CFG node, it becomes relevant to identify the first reach-
able CFG nodes from the slice set along any CFG path. From an execution
perspective, this translates to determining the potential program instructions
to be executed next in the slice. The next observable nodes can be renamed to
the next sliced-node to be visited. However, we keep the next observable term
for historical reason and ask the readers not to be confused with the observe

instruction. The formal definition of next observable nodes is as follows:

Definition 8 (Next Observable). Let n be a node in CFG G, and let SC be a
slice set. The set of next observable nodes obsSC

(n) contains all nodes m ∈ SC
such that there exists a valid CFG path [n1..nk] with n1 = n, nk = m, and we
must have ni 6∈ SC for 1 ≤ i ≤ k − 1.

For every semantic transition Pi ` Γ → Γ ′ for i = 1, 2, we establish labeled

transitions Pi ` Γ
l→ Γ ′, where the label l is either a next observable node n as

defined in Def. 8 or the symbol τ . In the former case, Pi signifies an observable
move, while in the latter case, it denotes a silent move.

Definition 9 (Labeled Transition). Let SC be the slice set for the slice P2

of the original program P1. For all configurations Γ1 and Γ2 of program Pi for
i = 1, 2 such that Pi ` Γ1 → Γ2, we define

– Pi ` Γ1
n→ Γ2 if n = node(Γ1) and n ∈ SC

– Pi ` Γ1
τ→ Γ2 otherwise.

We write:

– Pi ` Γ1
τ⇒ Γ2 for the reflexive transitive closure of Pi ` Γ1

τ→ Γ2

– Pi ` Γ1
n⇒ Γ2 if there exists a configuration Γ such that Pi ` Γ1

τ⇒ Γ and
Pi ` Γ

n→ Γ2

The observable transition
n→ requires that n ∈ SC and thus it affects the slicing

criterion. We can now use the definition of labeled transition to define the weak
(bi)simulation as follows:

Definition 10 (Weak Simulation and Bisimulation). Consider the follow-
ing properties for relation Φ:

(i) if Γ1ΦΓ2 and P1 ` Γ1
n⇒ Γ ′1, then there exists Γ ′2 such that Γ ′1ΦΓ

′
2 and

P2 ` Γ2
n⇒ Γ ′2.

(ii) if Γ1ΦΓ2 and P2 ` Γ2
n⇒ Γ ′2, then there exists Γ ′1 such that Γ ′1ΦΓ

′
2 and

P1 ` Γ1
n⇒ Γ ′1.

Φ is a weak simulation if (i) holds, and a weak bisimulation if both (i) and (ii)
hold.

We now define the relation
seq
' between the configurations of an original

program P1 and its slice P2 as follows:

Definition 11 (
seq
'). Let SC be the slice set for the slice P2 of the original

program P1, and let V represent the set of variables of P2, which is a subset of
variables of P1. Suppose Γ1 = (n1, µ1) and Γ2 = (n2, µ2) are valid configurations

of programs P1 and P2 respectively. The relation Γ1
seq
' Γ2 holds if the following

conditions are met:

1. obs(n1) = obs(n2), and
2. µ1 'V µ2, where the relation ' is specified in Def. 7.

Theorem 1 below states that
seq
' is either a weak simulation or a weak bisim-

ulation, depending on the dependece relations used to compute the slice set
SC :

Theorem 1 (Correctness Condition). Assume that SC is computed accord-

ing to Eq. 5. The relation
seq
' is a weak bisimulation relation if SC is closed

under
dd−→,

scd−−→, and
obsntd−−−−→, and it is a weak simulation relation otherwise.

Theorem 2 stated below ensures that the slice P2 is a correct nontermination

(in)sensitive distribution (in)sensitive slice of P1 if
seq
' is a weak (bi)simulation

due to the slice set SC computed according to the conditions stated in Theo-
rem 1.

Theorem 2 (Correctness).

1. P2 is a nontermination sensitive slice of P1 if SC is closed under
dd→,

scd→ and
obsntd−−−−→.

2. P2 is a nontermination insensitive distribution sensitive slice of P1 if SC is

closed under
dd→,

wcd→ and
obsntd−−−−→.

3. P2 is a nontermination insensitive distribution insensitive slice of P1 if SC

is closed under
dd→,

wcd→ and
obsd−−−→.

7.2 Proof of theorems

We need some auxiliary lemmas to prove the theorems.

Lemma 1. Given a slice set SC closed under
cd→, the obs(n) set of any CFG

node n contains at most one element.

Proof. According to Def. 8, obs(n) = {n} if n ∈ SC , obs(n) = ∅ if no CFG path
from n includes a node from SC , and the lemma is satisfied in both cases.

Assume n /∈ SC and suppose, contrary to the lemma, that there are distinct
nodes nk and nl such that both belong to obs(n). This implies the existence of
two distinct CFG paths: [n1 = n..nk] and [n1 = n..nl = nl] such that ni, n

j 6∈ SC
for each 1 ≤ i < k and 1 ≤ j < l, and nk, nl ∈ SC . Node nk (resp. nl)
postdominates all nodes between n1 and nk (resp. nl). Given that n has another
branch to node nl (resp. nk) and thus n is not strictly postdominated by either

nk or nl, either n
cd→ nk or n

cd→ nl holds. In any case, we get the contradiction

that n ∈ SC since SC is closed under
cd→. Therefore, our initial assumption that

obs(n) contains more than one element when n /∈ SC is false, and the lemma is
proven. ut

In what follows, we will abuse the notation and write obs(n) = m for obs(n) =
{m}.

Lemma 2. Let P ` 〈n1, µ1〉 → 〈n2, µ2〉 be a semantic transition of program P .
If code(n1) is skip, true, or false , then we must have µ1 = µ2.5

Proof. According to the SKIP, True, and False semantic rules in Fig. 3,
µ1 = µ2 trivially holds. ut

Lemma 3. Let P1 ` 〈n, µ1〉
n→ 〈n′, µ′1〉 and P2 ` 〈n, µ2〉

n→ 〈n′, µ′2〉 be two la-
belled transitions of P1 and its slice P2, and let V be the set of program variables
in P2. If µ1 'V µ2 holds, then µ′1 'V µ′2 holds as well.

Proof. 6 It is evident from the labelled transitions in the premise of the lemma
that n ∈ SC . Thus, code1(n) = code2(n). We infer the relation between µ′1 and
µ′2 from the relation µ1 'V µ2 by analyzing the semantic rules in Fig. 3 as
follows:

– code1(n) is a normal or probabilistic assignment to a variable x ∈ V . Ac-
cording to the ASSIGN or DIST rules, µ′1 'V µ′2 immediately follows from
µ1 'V µ2.

5 to be checked by Federico
6 TODO Federico: it’s a proof sketch, we need to complete this proof.

– Let code1(n) = Observe b. If the probabilistic store µ1 evaluates b true,
then so is P2 due to the relation µ1 'V µ2. Consequently, µ′1 'V µ′2 holds
according to the Observe Rule in Fig. 3.

– code1(n) = b. µ′1 'V µ′2 follows from µ1 'V µ2 since µ′1 is a subset of µi for
i = 1, 2.

– code1(n) =skip. Then, µ′1 'V µ′2 trivially holds since µ1 = µ′1 and µ2 = µ′2
ut

Lemma 4. Let SC be the slice set which is closed under
cd→, and let Γ1 be any

configuration of program P2 at CFG node n1. If obs(n1) = nk, then there exists

configuration Γk of node nk such that P2 ` Γ1
τ⇒ Γk.

Proof. Suppose obs(n1) = nk. Consequently, there exists a CFG path n1, . . . , nk
such that nk ∈ SC and ni 6∈ SC for 1 ≤ i < k. Let’s assume, without loss
of generality, that this path is the smallest one. Since ni 6∈ SC for 1 ≤ i <
k, code2(ni) must be skip, true, or false as per Def. 13. If code2(ni) is true
(or false), then node ni+1 is in the true (resp. false) branch of node ni, i.e.,
succT (ni) = ni+1 (resp. succF (ni) = ni+1). According to the semantic rules
illustrated in Fig. 3, there exists a sequence of configurations Γ1, . . . , Γk for the
nodes n1, . . . , nk exists such that P2 ` Γi ⇒ Γi+1 for 1 ≤ i < k. As ni 6∈ SC
for 1 ≤ i < k, we obtain the labelled transition P2 ` Γi

τ→ Γi+1 for 1 ≤ i < k.

Consequently, P2 ` Γ1
τ⇒ Γk holds. ut

Lemma 5. Let Γ1 and Γ2 be valid configurations of programs P1 and P2 such

that Γ1
seq
' Γ2. If there exists a transition P1 ` Γ1

n1→ Γ3, then a transition

P2 ` Γ2
n1⇒ Γ4 also exists such that Γ3

seq
' Γ4.

Proof. Let Γi = 〈ni, µi〉 for 1 ≤ i ≤ 4. First, we prove that the labeled transition

P2 ` Γ2
n1⇒ Γ4 exists. The transition P1 ` Γ1

n1→ Γ3 yields n1 ∈ SC , and

consequently, obs(n1) = n1. The relation Γ1
seq
' Γ2 yields obs(n1) = obs(n2) =

n1.
Let n2 6= n1. By Lemma 4, obs(n2) = n1 indicates the existence of a config-

uration Γ k of n1 such that P2 ` Γ2
τ⇒ Γ k. Thus, a sequence of configurations

Γ 1 = 〈n1, µ1〉, . . . , Γ k = 〈nk, µk〉 of P2 exists where Γ 1 = Γ2 and nk = n1. The

relation P2 ` Γ i
τ→ Γ i+1 holds for all i = 1, . . . , k − 1, implying ni /∈ SC and

code2(ni) is skip, true, or false as per Def. 13. Consequently, µi = µi+1 for all

1 ≤ i ≤ k due to Lemma 2. As Γ1
seq
' Γ2, we have µ1 'V µ2 where V is the set

of program variables in P2 which is a subset of program variables in P1. Thus,
µ1 'V µk. If n2 = n1, then Γ2 = Γ k and µ1 'V µk trivially hold due to the
precondition of the lemma. Hence, either µ1|V = µk|V or µ1|V ≤ µk|V .

Therefore, the execution of P1 and P2 converge at n1, and the relative prob-
ability distribution µk|V of P2 at n1 is at least equal to the relative probability
distribution µ1|V of P1. Consequently, P2 must take the same path as P1 from
n1 even if n1 is a predicate node or represents an observe statement, as P2

must evaluate any conditional expression at n1 to the same values as P1 due to
the relation µ1|V ≤ µk|V . Thus, if P1 ` Γ1

n1→ Γ3 exists in P1, a configuration

Γ4 = 〈n3, µ4〉 also exists such that n4 = n3, and we get the transition Γ k → Γ4

in P2. Since n1 ∈ SC , we thus have P2 ` Γ k
n1→ Γ4, and consequently, we get the

transition P2 ` Γ2
n1⇒ Γ4 in P2.

As (i) obs(n3) = obs(n3) holds trivially, and (ii) µ3 'V µ4 according to

Lemma 3, the relation Γ3
seq
' Γ4 holds according to the definitions of

seq
' . ut

Lemma 6. Assume that SC is closed under
scd−−→ and

obsntd−−−−→. Let Γ1 be any
configuration of program P1 at CFG node n1, and let SC be closed under the

relation
scd→. If obs(n1) = nk and n1 6= nk, then there exists configuration Γk of

node nk such that P1 ` Γ1
τ⇒ Γk and store(Γ1) =V store(Γk) where V is the

set of program variables at P2.

Proof. Assume that obs(n1) = nk. Thus, there exists a CFG path n1, . . . , nk
such that ni 6∈ SC for all 1 ≤ i < k. If there exists a configuration Γi of node ni
which is an assignment or skip instruction, then there always exists a configu-
ration Γi+1 of ni+1 such that P1 ` Γi ⇒ Γi+1. In cases where ni represents an
observe instruction, there exists a transition P1 ` Γi ⇒ Γi+1 for some valuation
of the program variables in P1; otherwise, the observe instruction is equivalent
to Observe(false), leading to a final distribution 0

0 , which renders program P1

nonsensical. If ni represents a predicate node having two branches ni+1 and
n′, then n′ does not lead to nontermination and all CFG paths from n′ must
converge at nj for some i+ 1 < j ≤ k; otherwise, ni would be in SC due to the

relation
scd−−→. Therefore, we must have the transition P1 ` Γi ⇒ Γj where either

j = i + 1 or i + 1 < j ≤ k. This implies that we have the labelled transition
P1 ` Γ1

τ⇒ Γk. Also, store(Γ1) =V store(Γk) due to the following: (i) any (ran-
dom) assignment to a variable in V at any node ni that is used in nk or any
other node in SC would create a data dependency, and ni would be included in
SC , (ii) in instances where node ni modifies a variable in V , it is subsequently
overwritten at a node within SC ; consequently, any alteration in the store be-
comes inconsequential, and the update in the store can be disregarded, and (iii)
if ni represents an Observe(e) statement, then variables in e are not part of V ,
thereby not impacting the distributions in store(Γk)|V , as otherwise ni would

be included in SC due to the relation
obsntd−−−−→. ut

Lemma 7. Assume that SC is closed under
scd→ and and

obsntd−−−−→. Let Γ1 and Γ2

be valid configurations of programs P1 and P2 such that Γ1
seq
' Γ2. If there exists

a transition P2 ` Γ2
n2→ Γ4, then a transition P1 ` Γ1

n2⇒ Γ3 also exists such that

Γ3
seq
' Γ4.

Proof. Let Γi = 〈ni, µi〉 for 1 ≤ i ≤ 4. First, we prove that the labeled transition

P1 ` Γ1
n2⇒ Γ3 exists. The transition P2 ` Γ2

n2→ Γ4 yields n2 ∈ SC , and

consequently, obs(n2) = n2. The relation Γ1
seq
' Γ2 yields obs(n1) = obs(n2) =

n2.
Assume that n1 6= n2. As obs(n1) = n2, by Lemma 6, there exists a configu-

ration Γ k of n2 such that the labelled transition P1 ` Γ1
τ⇒ Γ k holds. Moreover,

µ1 =V store(Γ k), and consequently, store(Γ k) 'V µ2 holds due to µ1 'V µ2

where V is the set (and a subset) of program variables in P2 (resp. P1). If
n2 = n1, then Γ1 = Γ k and store(Γ k) 'V µ2 holds due to the precondition
of the lemma. Therefore, the execution of P1 and P2 converge at n2, and the
relative probability distribution µk|V of P1 at n2 is at least equal to the relative
probability distribution µ2|V of P2. Consequently, P1 must take the same path
as P2 from n2 even if n2 is a Cond node or represents an Observe statement,
as P1 must evaluate any conditional expression at n2 to the same values as P2

due to the relation µ1|V = µk|V . Thus, P1 ` Γ1
n2→ Γ3 exists in P1, and a config-

uration Γ3 = 〈n3, µ3〉 also exists such that n3 = n4, and we get the transition

Γ k → Γ3 in P1. Since n2 ∈ SC , we thus have P1 ` Γ k
n2→ Γ3, and consequently,

we get the transition P1 ` Γ1
n2⇒ Γ3.

As (i) obs(n3) = obs(n3) holds trivially, and (ii) µ3 'V µ4 according to

Lemma 3, the relation Γ3
seq
' Γ4 holds according to the definitions of

seq
' . ut

Lemma 8. Assume that SC is closed under
scd→ and and

obsntd−−−−→. Let Γ1 and Γ2

be valid configurations of programs P1 and P2 such that Γ1
seq
' Γ2. If there exists

a transition P2 ` Γ2
n⇒ Γ4, then a transition P1 ` Γ1

n⇒ Γ3 also exists such that

Γ3
seq
' Γ4.

Proof. If n2 = n, then the lemma holds due to Lemma 7. Assume that n2 6= n
and P2 ` Γ2

n⇒ Γ4. Thus, a sequence of silent transitions P2 ` Γ i
τ→ Γ i+1 for

1 ≤ i < k exists, along with the transition P2 ` Γ k
n→ Γ4 such that Γ 1 = Γ1.

Let Γi = 〈ni, µi〉 for 1 ≤ i ≤ 4, and let Γ i = 〈ni, µi〉 for 1 ≤ i ≤ k. Firstly, we

establish the relation Γ1
seq
' Γ k.

The silent transition P2 ` Γ i
τ→ Γ i+1 implies ni /∈ SC . The transition P2 `

Γ k
n→ Γ4 indicates that nk = n ∈ SC . Consequently, obs(n2) = obs(nk) = n.

The relation Γ1
seq
' Γ2 implies obs(n1) = obs(n2), and hence obs(n1) = obs(nk).

This proves the first precondition for the relation Γ1
seq
' Γ k. We now establish

the relation µ1 'V µk where V is the set (and a subset) of program variables
in P2 (resp. P1).

Since obs(n2) = n = nk, all CFG paths from n2 must converge at nk without
going through SC . For any CFG node n′ in any such path, code2(n′) is skip, true
, or false . By successive application of Lemma 2, we obtain µ2 = µk. Therefore,

µ1 'V µk yields from the relation µ1 'V µ2, and consequently, Γ1
seq
' Γ k holds.

As P2 ` Γ k
n→ Γ4 exists, the lemma is proven by lemma 7.

ut

Corollary 1. Assume the transitions P2 ` Γ2
n⇒ Γ4 and P1 ` Γ1

n⇒ Γ3 such

that Γ1
seq
' Γ2 and Γ3

seq
' Γ4 hold. If store(Γ1) =V store(Γ2) and SC is closed

under
scd→ and and

obsntd−−−−→, then store(Γ3) =V store(Γ4).

Lemma 9. Assume that SC is closed under
dd−→,

wcd−−→, and either
obsntd−−−−→ or

obsd−−−→. Let Γ1 and Γ2 be valid configurations of programs P1 and P2 such that

Γ1
seq
' Γ2. If there exists a transition P1 ` Γ1

n⇒ Γ3, then a transition P2 ` Γ2
n⇒

Γ4 also exists such that Γ3
seq
' Γ4.

Proof. Let’s consider that the transition P1 ` Γ1
n⇒ Γ3 exists. It implies that

a sequence of silent transitions P1 ` Γ i
τ→ Γ i+1 for 1 ≤ i < k also exist, along

with the transition P1 ` Γ k
n→ Γ3 such that Γ 1 = Γ1. Let Γi = 〈ni, µi〉 for

1 ≤ i ≤ 4, and let Γ i = 〈ni, µi〉 for 1 ≤ i ≤ k. Firstly, we establish the relation

Γ k
seq
' Γ2.

The silent transition P1 ` Γ i
τ→ Γ i+1 implies ni /∈ SC . The transition P1 `

Γ k
n→ Γ 3 indicates that nk = n ∈ SC . Consequently, obs(n1) = obs(nk) = n.

The relation Γ1
seq
' Γ2 implies obs(n1) = obs(n2), and hence obs(nk) = obs(n2).

This proves the first precondition for the relation Γ k
seq
' Γ2. We now establish

the relation µk 'V µ2 where V is the set (and a subset) of program variables
in P2 (resp. P1).

Assume that no predicate node ni exists in the path n1, . . . , nk. Then,
store(Γ 1) =V store(Γ k) holds due to the following: (i) any (random) assign-
ment to a variable in V at any node ni that is used in nk or any other node
in SC would create a data dependency, and ni would be included in SC , (ii) in
instances where node ni modifies a variable in V , it is subsequently overwritten
at a node within SC ; consequently, any alteration in the store becomes incon-
sequential, and the update in the store can be disregarded, (iii) if ni represents
an Observe(e) statement, then variables in e are not part of V , thereby not
impacting the distributions in store(Γ k)|V , as otherwise ni would be included

in SC due to the relation
obsntd−−−−→ or

obsd−−−→.

In cases where node ni represents a predicate node with successors ni+1 and
n′, the branch from n′ either diverges or both branches converge at a node nj

for any i + 1 ≤ j ≤ k without going through a node in SC , as otherwise we

would have ni ∈ SC due to the relation
cd−→. Then, one of the following must

hold:

– If both the branches converge at nj , and since ni 6∈ SC , store(Γ 1) =V

store(Γ k) holds.

– If SC is closed under
scd−−→ and there exists a diverging branch at ni, this

divergence would be captured by including ni in SC . As a result, we would
obtain i = k and store(Γ 1) =V store(Γ k) holds.

– If SC is closed under
wcd−−→ and

obsntd−−−−→, then the divergence will be captured
only by including ni in SC if the diverging loop condition is affected by

a node in SC due to (
wcd−−→ ∪ dd−→)∗. If all such divergences are captured,

store(Γ k) =V store(Γ 1) holds; otherwise, some distributions diminishes in
the diverging branch and store(Γ k) ≤V store(Γ 1) holds. In any case, the
relation store(Γ k) =V

q store(Γ 1) holds for any q ∈ [0, 1].

– If SC is closed under
wcd−−→ and

obsd−−−→ and there exists a diverging branch at
ni, we obtain store(Γ k) ≤V store(Γ 1).

So, any change in the probabilistic stores in µi along the CFG path n1, . . . , n3

may influence the probabilistic store at µ3 for the subset V of program variables
in P1 if there exists a diverging branch that is not captured in SC . Nevertheless,
the relation store(Γ k) 'V store(Γ 1) holds which yields the relation µk 'V µ2

from the relation µ1 'V µ2. Consequently, Γ k
seq
' Γ2 holds. As P1 ` Γ k

n→ Γ3

exists, the lemma is proven by lemma 5. ut

Corollary 2. Assume the transitions P2 ` Γ2
n⇒ Γ4 and P1 ` Γ1

n⇒ Γ3 such

that Γ1
seq
' Γ2 and Γ3

seq
' Γ4 hold. Then, the following must hold:

1. If store(Γ1) ≤V store(Γ2) and SC is closed under
wcd→ and

obsd−−−→, then
store(Γ3) ≤V store(Γ4).

2. If store(Γ1) =V
q store(Γ2) for some q ∈ [0, 1] and SC is closed under

wcd→
and

obsntd−−−−→, then store(Γ3) = q′V store(Γ4) for some q′ ∈ [0, 1].

Proof (Theorem 1). Let Γ1 and Γ2 be valid configurations of programs P1 and

P2, and let Γ1
seq
' Γ2 holds.

1. Assume that there exists a labeled transition P1 ` Γ1
n⇒ Γ ′1. By lemma 9,

P2 ` Γ2
n⇒ Γ ′2 also exists such that Γ ′1

seq
' Γ ′2. This proves that

seq
' is a

simulation relation.
2. The proof in (1) is one direction of the bisimulation as it also holds when

SC is closed under
scd−−→, and

obsntd−−−−→. For the other direction, let us assume
that the labeled transition P2 ` Γ2

n⇒ Γ4. By Lemma 8, a transition P1 `
Γ1

n⇒ Γ3 also exists such that Γ3
seq
' Γ4.

ut

Proof (Theorem 2). Let Γ0 and Γk (Γ ′0 and Γ ′k) be the initial and final config-
urations of P1 (resp. P2). Let V be the set (and subset) of program variables in
P2 (resp. P1).

1. Let’s assume that SC is closed under
dd→,

scd→ and
obsntd−−−−→. Then, according

to Theorem 1,
seq
' is a weak bisimulation relation. This implies that for any

finite sequence of configurations Γ0, Γ1, . . . , Γk such that P1 ` Γi
ni⇒ Γi+1

holds for 0 ≤ i < k, there exists a corresponding sequence Γ ′0, Γ
′
1, . . . , Γ

′
k

where P2 ` Γ ′i
ni⇒ Γ ′i+1 holds for 0 ≤ i < k, and vice versa. Thus, P1

and P2 share the same probability p of all valid executions. Moreover, if
store(Γ0) =V store(Γ ′0), then, according to Corollaries 1 and 2, we deduce
store(Γk) =V store(Γ ′k). Hence, we establish the equality DP1 = DP2 where
DP1 and DP2 are derived by normalizing the distributions store(Γk) and
store(Γ ′k) with p.

2. Let’s assume that SC is closed under
dd→,

wcd→ and
obsntd−−−−→. Then, according

to Theorem 1,
seq
' is a weak simulation relation. This implies that for any

finite sequence of configurations Γ0, Γ1, . . . , Γk such that P1 ` Γi
ni⇒ Γi+1

holds for 0 ≤ i < k, there exists a corresponding sequence Γ ′0, Γ
′
1, . . . , Γ

′
k

where P2 ` Γ ′i
ni⇒ Γ ′i+1 holds for 0 ≤ i < k. According to Corollary 2, we can

deduce that there exists q, q′ ∈ [0, 1] such that if store(Γ0) =V
q store(Γ ′0),

then store(Γk) =V
q′ store(Γ

′
k).

Any Observe statement that does not belong to SC in P1 is replaced by a
skip statement in P2. Thus, if p1 and p2 are the probabilities of all valid
executions in P1 and P2 respectively, then we must have p1 ≤ p2. Hence,
we establish the relation DP1 = p × DP2 from the equality store(Γk) =V

q′

store(Γ ′k), where p = q′ × p2/p1, p ∈ [0, 1] (as if q′ = 1 then p2 = p1), and
DP1

and DP2
are the normalized distributions of P1 and P2 by p1 and p2 (

i.e. DP1
= store(Γk)/p1, and similarly for DP2

).

3. Let’s assume that SC is closed under
dd→,

wcd→ and
obsd−−−→. We can prove as per

(2) above that if store(Γ0) ≤V store(Γ ′0), then store(Γk) ≤V store(Γ ′k). This
implies that DP1 ≤ DP2 where DP1 and DP2 are the normalized distributions
of P1 and P2 by p1 and p2 (i.e. DP1

= store(Γk)/p1, and similarly for DP2
)

since p1 ≤ p2.
ut

8 Slicing Algorithm

In this section, we develop algorithms to compute various slices according to
Eq. 5. Our slicing algorithm is based on computing a partial slice set according
to Eq. 4 which is subsumed by Eq. 5. The algorithm requires computing data
and control dependencies iteratively. Even though there exist efficient algorithms
to compute data dependencies, we provide Alg. 1 which performs incremental
computation of data dependencies with improved amortized complexity.

Alg. 1 computes the set of CFG nodes dX influenced by data dependencies
from a given set of nodes X in the CFG G. It identifies nodes n in G such that

there exists a node m in the set X where a data dependency relation n
dd−→ m

exists. The computation is based on determining the set of relevant variables
that impact the computation in X. In other words, the variables referenced by
any node n in X are affected by the execution of the statements represented by
the nodes in dX. Let us first define RVs concerning a set X of CFG nodes.

Definition 12 (Relevant Variables). Let G be the CFG of a given program
and let X be any set of CFG nodes. The set of relevant variables denoted rvG(n)
at any node n in the CFG G comprises all variables v specified in Cases (1) and
(2) below:

1. v ∈ ref (n) if any of the conditions (a)-(b) below are satisfied on the CFG
node n:
(a) Initialization: n ∈ X.
(b) Data dependency: def (n) ∩ rvG(m) 6= ∅ for some m ∈ succ(n)

2. Continuation criteria: Additionally, v ∈ rvG(m) is also considered a RV
at n (i.e., v ∈ rvG(n)) if there exists a CFG path n = n1, . . . ,m = nk with
k > 1, such that v 6∈ def (ni) for all 1 ≤ i ≤ k − 1.

Algorithm 1: computeDD

Input : CFGG,RV (n) for all n ∈ N , and the set X of CFG nodes
Output: dX - set of CFG nodes affecting the computation at X

1 W = X, dX = ∅
2 while (W 6= ∅) do
3 remove an element m from W
4 forall (n ∈ pred(m)) do
5 if (def(n) ∩RV (m) 6= ∅) then
6 dX = ddX ∪ {n}
7 Z = RV (n) ∪ (RV (m) \ def(n))

8 end
9 else

10 Z = RV (m)
11 end
12 if (Z 6⊆ RV (n)) then
13 RV (n) = RV (n) ∪ Z
14 W = W ∪ {n}
15 end

16 end

17 end
18 return dX

The above definition is inherently recursive. As per condition 1(a) in the
definition, the initial sets of RVs are established from ref (n) in Alg. 1 for all
n ∈ X. These initial RVs are propagated backward through CFG due to the
continuation criteria (2) specified in the definition. New RVs are generated based
on condition 1(b) in the definition, stemming from data dependencies, which are
subsequently propagated following the continuation criteria. Alg. 1 computes
these RVs, and as new RVs are generated at any CFG node m due to condition
1(b), m affects the computation at nodes in X due to data dependencies and
consequently m is included in the set dX of CFG nodes. Any update to the set
RV in the algorithm is considered global.

Alg. 2 calculates a partial slice set, denoted as Sp, in accordance with Eq. 4,
utilizing a specified slicing criterion, Cp, and the CFG G. At Line 4, it deter-
mines the set of CFG nodes influenced by data dependencies, leveraging the
computation of RVs carried out in Alg. 1. The control-closure operation at
Line 5 establishes the closure of control dependencies, employing either weak or
strong control closure algorithms.

Algorithm 2: computePartialSliceSet

Input : CFG G, set of CFG nodes Cp, sets of relevant variables RV,
and control closure algorithm control-closure

Output: partial slice set Sp
1 Sp = Cp
2 S = ∅
3 while Sp 6= S do
4 S = computeDD(G,RV, Sp)
5 Sp = control-closure(G,S)

6 end
7 return Sp

Algorithm 3: computeSliceSet

Input : CFG G, slicing criterion C, slice type T
Output: slice set SC

1 cc = WCC
2 obsNTSet = {n : n ∈ N,n represents an observe node}
3 if (T asks for nontermination-sensitive slice) then
4 cc = SCC
5 end
6 if (T asks for distribution-sensitive or nontermination-sensitive slice)

then
7 Let C ′ = C ∪ {nstart} where nstart is the start node in the CFG
8 obsNTSet = SCC(G,C ′) \WCC(G,C ′)

9 end
10 RV (n) = ∅ for all n ∈ N
11 SC = computePartialSliceSet(G,C,RV, cc)
12 forall (n ∈ obsNTSet) do
13 RV ′(n) = ∅ for all n ∈ N

Sp = computePartialSliceSet(G, {n}, RV ′, cc)
14 if (∃m ∈ SC ∩ Sp such that RV (m) ∩RV ′(m) 6= ∅) then
15 SC = SC ∪ Sp
16 end

17 end
18 return SC

Algorithm 3 computes the slice set in accordance with Equation 5. Initially,
it determines the appropriate control-closure algorithm to compute the desired
slice type, denoted as T . Subsequently, the set obsNTSet is established, con-
taining the designated observe-nontermination instructions determined by the
slice type T . This set exclusively encompasses the observe nodes if the aim is
to compute a nontermination and distribution insensitive slice. Otherwise, both
weak and strong control closure of the set C ′ = C ∪ {nstart} is computed,
and the set SCC(G,C ′) WCC(G,C ′) encompasses all CFG nodes representing
nonterminating instructions that could influence the computation in C.

Then, the partial slice set SC is computed which corresponds to the left part
of the right hand side in Equation 5. For the rightmost part of that equation,
Alg. 2 is invoked again to compute the partial slice set Sp for the slicing crite-
rion {n} for each node n ∈ obsNTSet. Sets of RVs RV ′ are calculated during
this process. Line 14 of the algorithm determines the presence of a conditional
dependency between the sets SC and Sp, and SC is expanded by Sp if such a
dependency exists.

After computing the slice set SC , we can compute the slice P2 of the original
program P1 by modifying the function code2 as follows:

Definition 13 (Slice). Let SC be the slice set of an original program P1 repre-
sented as the CFG G = (N,E) with an associated function code1, and let n ∈ N .
We obtain the associated function code2 of the sliced program P2 as follows:

1. code2(n) = code1(n) if n ∈ SC .
2. code2(n) =skip if n /∈ SC and code1(n) is either an observe statement or a

probabilistic/non-probabilistic assignment statement.
3. code2(n) =true if n /∈ SC , code1(n) is a predicate statement, and |[nT ..nk]| <
|[nF ..nk]| where nT and nF are the true and false successors of node n and
obs(n) = {nk}. code2(n) =false otherwise.

In a postprocessing phase, we can optimize the sliced program P2 by remov-
ing all skip statements followed by removing all predicate staments that are true
/false with an empty body.

Efficiency This algorithm facilitates the incremental computation of data de-
pendencies with an improved amortized complexity.

Note 1. to be competed...

9 Related Work

Although numerous studies have delved into various aspects of slicing determin-
istic programs [13, 11, 24], relatively few have explored slicing in the context of
probabilisitc programs.

Hur et al. [10] were the first to demonstrate the inadequacy of conventional
dependence-based slicing methods for probabilistic programs. They introduced
a novel dependence relation called observe dependence to account for the impact
of Observe statements on the slicing criteria. Their approach involves computing
slices by considering both conventional data and control dependences, alongside
observe dependence. They employ a denotational-style semantics of probabilis-
tic programs and offer mathematical proofs to establish the correctness of their
algorithm. Following this work, Amtoft and Banerjee [2, 1] investigated the slic-
ing of structured imperative probabilistic programs by representing them as
probabilistic control flow graphs. They distinguish between the slicing specifi-
cation and the slicing algorithm, ensuring that for any correct slice of a given

program, another slice exists where the program variables are probabilistically
independent. They present an algorithm to compute least slices and validate its
correctness by adopting the denotational style semantics of Kozen [12].

Navarro and Olmedo [15] adopted a novel approach to slicing probabilistic
programs, employing the slicing criterion defined by probabilistic assertions un-
like traditional slicing using program variables at designated program points.
They utilized the greatest pre-expectation transformer, analogous to Dijkstra’s
weakest pre-condition transformer, to retroactively propagate post-conditions
in backward slice computation. This specification based slicing approach yields
smaller-sized slices but demands increased computational overhead.

While prior methods, with the exception of Navarro and Olmedo’s, failed to
differentiate between observation failure and nontermination, they all computed
only nontermination-insensitive, distribution-sensitive slices. In contrast, our ap-
proach computes both nontermination-insensitive and nontermination-sensitive
slices. We employ an operational-style semantics for probabilistic programs and
validate the correctness of our slicing technique using (bi)simulation, akin to
the approach outlined in Masud et al. [21].

References

1. Torben Amtoft and Anindya Banerjee. A theory of slicing for probabilistic control
flow graphs. In Bart Jacobs and Christof Löding, editors, Foundations of Software
Science and Computation Structures, pages 180–196, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

2. Torben Amtoft and Anindya Banerjee. A theory of slicing for imperative proba-
bilistic programs. ACM Trans. Program. Lang. Syst., 42(2), April 2020.

3. Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. Foundations of proba-
bilistic programming. Cambridge University Press, 2020.

4. Benjamin Bichsel, Timon Gehr, and Martin Vechev. Fine-grained semantics for
probabilistic programs. In Programming Languages and Systems: 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings 27, pages 145–185. Springer, 2018.

5. S. Danicic, R. Barraclough, M. Harman, J. D. Howroyd, Á. Kiss, and M. Laurence.
A unifying theory of control dependence and its application to arbitrary program
structures. Theoretical Computer Science, 412(49):6809–6842, 2011.

6. Cynthia Dwork. Differential privacy. In Proceedings of the 33rd International
Conference on Automata, Languages and Programming - Part II, ICALP’06, pages
1–12. Springer, 2006.

7. Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, jul 1987.

8. Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence.
Nature, 521(7553):452–459, 2015.

9. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Sys.
Sci., 28(2):270–299, 1984.

10. Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel. Slicing
probabilistic programs. SIGPLAN Not., 49(6):133–144, June 2014.

11. Husni Khanfar, Björn Lisper, and Abu Naser Masud. Static backward program
slicing for safety-critical systems. In Juan Antonio de la Puente and Tullio Var-
danega, editors, Reliable Software Technologies - Ada-Europe 2015 - 20th Ada-
Europe International Conference on Reliable Software Technologies, Madrid Spain,
June 22-26, 2015, Proceedings, volume 9111 of Lecture Notes in Computer Science,
pages 50–65. Springer, 2015.

12. Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and
System Sciences, 22(3):328–350, 1981.

13. Björn Lisper, Abu Naser Masud, and Husni Khanfar. Static backward demand-
driven slicing. In Proceedings of the 2015 Workshop on Partial Evaluation and
Program Manipulation, PEPM ’15, page 115–126, New York, NY, USA, 2015.
Association for Computing Machinery.

14. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

15. Marcelo Navarro and Federico Olmedo. Slicing of probabilistic programs based on
specifications. Science of Computer Programming, 220:102822, 2022.

16. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. Springer, 1999.

17. Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-
Pieter Katoen, and Annabelle Mciver. Conditioning in probabilistic programming.
ACM Trans. Program. Lang. Syst., 40(1), jan 2018.

18. Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in
a software development environment. SIGSOFT Softw. Eng. Notes, 9(3):177–184,
April 1984.

19. Keshav Pingali and Gianfranco Bilardi. Optimal control dependence computation
and the roman chariots problem. ACM Trans. Program. Lang. Syst., 19(3):462–
491, May 1997.

20. A. Podgurski and L. A. Clarke. A formal model of program dependences and
its implications for software testing, debugging, and maintenance. IEEE Trans.
Softw. Eng., 16(9):965–979, September 1990.

21. Reese T. Prosser. Applications of boolean matrices to the analysis of flow dia-
grams. In Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-
ACM Computer Conference, IRE-AIEE-ACM ’59 (Eastern), page 133–138, New
York, NY, USA, 1959. Association for Computing Machinery.

22. Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff,
and Matthew B. Dwyer. A new foundation for control dependence and slicing for
modern program structures. ACM Trans. Program. Lang. Syst., 29(5):27–es, aug
2007.

23. Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE’81, page 439–449. IEEE Press, 1981.

24. Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, page 439–449. IEEE Press, 1981.

25. Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief
survey of program slicing. ACM SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

10 Leftovers

10.1 Account for Observe Dependences

As first observed by Hur et al. [10], traditional notions of data and control de-
pendences are not enough to produce semantic preserving slices of probabilistic
programs with conditioning. To illustrate this, consider the program below:

1: x :≈ unif[1, 4];
2: y :≈ unif[1, 4];
3: observe (x+ y = 3);
4: return (4− x)

The conditioning in line 3 constrains the values of x and y, e.g., prohibiting them
be 4 (or even 3). Now, since we are interested in preserving the distribution of
final values of x, the observe statement must be preserved in the slice program
and, as a consequence, also the random assignment to y. In other words, the
only valid slice of the program is the very same program.

This new class of dependence induced by observe statement falls out of the
scope of data and control dependences, and must thus be captured by an ad-
hoc, additional dependence, dubbed observe dependence by Hur et al. [10]. To
compute program slices we thus take the transitive closure of the union of data,
control and observe dependence relations Todo: @Abu, will this be so? Or more

like Hur, who somehow “extends” data and control dependance to include also observe

dependences?

We now illustrate the effect of observe dependences through a more complex
example, adapted from [10]:

1: i := 1;
2: b :≈ unif[0, 1];
3: odd := 0;
4: while (b == 0)
5: i := i+ 1;
6: odd := 1− odd ;
7: b :≈ unif[0, 1]
8: observe (odd == 0);
9: return i

The program basically encodes a geometric distribution, which is conditioned
on observing the first success after an odd number of trials. Said otherwise, the
observe statement in line 8 blocks all executions where variable i ends up with
an even value. Therefore, the observe statement together with the assignments
to variable odd in lines 3 and 6 must be preserved, and the only correct slicing of
the program is the very same program (in either the non-termination sensitive or
insensitive flavour, as the only non-terminating execution of the loop occurs with
probability 0). In our slicing approach, observe dependences crisply captures this
dependence.

10.2 Differentiates conditioning failure and non-termination

Todo: Present, informally, our
adopted semanticsOur more fine-grained semantics distinguishes between conditioning failure and

non-termination, and this is reflected in our slicing technique. For example, let
us consider programs P0 and P1 from Fig. 1 and apply them a non-termination
sensitive slicing. While our slicing technique will slice away the observe statement
from program P0 (together with the random assignment to y), it will preserve
the loop from program P1.

no mo bolt l

I
no o bolt d

b
Nz 10,0 t

F
Me hullJustbuton

ft
no o o too

b
Ms 10,0 ht 1010 I

I
9ns to o till d t t no life

ft
no volts

b
Ms 11,0hot ti d t f

I
9ns 12,0 ht 410 f no loul g

ft
no goOlof

b
Ms 12,0hot I 1 t f

I
9Ms 13,01411310 f no 13,0 837

IT

Fig. 5: Small-step semantics for the CFGs from Example 2.

